Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 67(2): 356-370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032369

RESUMO

AIMS/HYPOTHESIS: Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo. METHODS: Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo. RESULTS: Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression. CONCLUSIONS/INTERPRETATION: RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Humanos , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Derivação Gástrica/métodos , Células L , Diabetes Mellitus Tipo 2/metabolismo , RNA , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Colesterol , RNA Mensageiro , Glicemia/metabolismo
2.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36656641

RESUMO

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina/genética , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição PAX5/metabolismo
3.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613763

RESUMO

Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.


Assuntos
Amiloidose , Apolipoproteína A-I , Humanos , Apolipoproteína A-I/metabolismo , Especificidade de Órgãos/genética , Amiloidose/metabolismo , Mutação , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Amiloide/metabolismo
4.
J Lipid Res ; 62: 100004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33410751

RESUMO

Apolipoprotein A-I (ApoA-I) of high density lipoproteins (HDLs) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in ApoA-I of HDLs are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/HDL cholesterol. To explain this paradox, we show that the HDL particle profiles of patients carrying either L75P or L174S ApoA-I amyloidogenic variants show a higher relative abundance of the 8.4-nm versus 9.6-nm particles and that serum from patients, as well as reconstituted 8.4- and 9.6-nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4-nm rHDL have altered secondary structure composition and display a more flexible binding to lipids than their native counterpart. The reduced HDL cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles, and better cholesterol efflux due to altered, region-specific protein structure dynamics.


Assuntos
Apolipoproteína A-I
5.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165613, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765698

RESUMO

The increase of plasma levels of high-density lipoproteins and Apolipoprotein A-I (ApoA-I), its main protein component, has been shown to have a positive action on glucose disposal in type 2 diabetic patients. The current study investigates the unexplored function of ApoA-I to prime beta cells for improved insulin secretion. INS-1E rat clonal beta cells as well as isolated murine islets were used to study the effect of ApoA-I on responsiveness of the beta cells to high glucose challenge. Confocal and transmission electron microscopy were used to dissect ApoA-I mechanisms of action. Chemical endocytosis blockers were used to understand the role of ApoA-I internalization in mediating its positive effect. Pre-incubation of beta cells and isolated murine islets with ApoA-I augmented glucose stimulated insulin secretion. This effect appeared to be due to an increased reservoir of insulin granules at the cell membrane, as confirmed by confocal and transmission electron microscopy. Moreover, ApoA-I induced pancreatic and duodenal homeobox 1 (PDX1) shuttling from the cytoplasm to the nucleus, with the subsequent increase in the proinsulin processing enzyme protein convertase 1 (PC1/3). Finally, the blockade of ApoA-I endocytosis in beta cells resulted in a loss of ApoA-I positive action on insulin secretion. The proposed mechanisms of the phenomenon here described include ApoA-I internalization into beta cells, PDX1 nuclear translocation, and increased levels of proinsulin processing enzymes. Altogether, these events lead to an increased number of insulin granules.


Assuntos
Apolipoproteína A-I/metabolismo , Glucose/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos
6.
Diabetologia ; 62(7): 1257-1267, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31069401

RESUMO

AIMS/HYPOTHESIS: Finding new treatment alternatives for individuals with diabetes with severe insulin resistance is highly desired. To identify novel mechanisms that improve glucose uptake in skeletal muscle, independently from insulin levels and signalling, we have explored the therapeutic potential of a short peptide sequence, RG54, derived from apolipoprotein A-I (ApoA-I). METHODS: INS-1E rat clonal beta cells, C2C12 rat muscle myotubes and J774 mouse macrophages were used to study the impact of RG54 peptide on glucose-stimulated insulin secretion, glucose uptake and cholesterol efflux, respectively. GTTs were carried out on diet-induced insulin-resistant and Leprdb diabetic mouse models treated with RG54 peptide, and the impact of RG54 peptide on atherosclerosis was evaluated in Apoe-/- mice. Control mice received ApoA-I protein, liraglutide or NaCl. RESULTS: The synthetic RG54 peptide induced glucose uptake in cultured muscle myotubes by a similar amount as insulin, and also primed pancreatic beta cells for improved glucose-stimulated insulin secretion. The findings were verified in diet-induced insulin-resistant and Leprdb diabetic mice, jointly confirming the physiological effect. The RG54 peptide also efficiently catalysed cholesterol efflux from macrophages and prevented the formation of atherosclerotic plaques in Apoe-/- mice. CONCLUSIONS/INTERPRETATION: The RG54 peptide exhibits good prospects for providing glucose control and reducing the risk of cardiovascular disease in individuals with severe insulin resistance.


Assuntos
Apolipoproteína A-I/química , Aterosclerose/prevenção & controle , Glucose/metabolismo , Peptídeos/química , Peptídeos/uso terapêutico , Animais , Aterosclerose/metabolismo , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Mol Cell Endocrinol ; 480: 1-11, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30290217

RESUMO

Previously, apoE-derived ABCA1 agonist peptides have been shown to possess anti-atherosclerotic and possibly antidiabetic properties. Here we assessed the in vitro and in vivo actions of a second generation of ABCA1 peptide agonists, CS6253 and T6991-2, on glucose homeostasis. The results show that these two peptides improve glucose tolerance in a prediabetic diet-induced obesity mouse model by enhancing insulin secretion. It was further demonstrated that T6991-2 also improved glucose tolerance in leptin-deficient (ob/ob) mice. CS6253 increased insulin secretion both under basal conditions and in response to high glucose stimulation in pancreatic INS-1 ß-cells rendered leptin receptor deficient with specific siRNA. Additional in vitro cell studies suggest that the CS6253 agonist attenuates hepatic gluconeogenesis and glucose transport. It also potentiates insulin-stimulated glucose uptake and utilization. These observed anti-diabetic actions suggest additional benefits of the CS6253 and T6991-2 ABCA1 peptide agonists for cardiovascular disease beyond their direct anti-atherosclerosis properties previously described.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/farmacologia , Hipoglicemiantes/farmacologia , Peptídeos/farmacologia , Animais , Aterosclerose/patologia , Linhagem Celular , Linhagem Celular Tumoral , Dieta Hiperlipídica , Modelos Animais de Doenças , Exenatida/farmacologia , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/metabolismo , Humanos , Resistência à Insulina , Secreção de Insulina/efeitos dos fármacos , Leptina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/patologia , Ratos , Triglicerídeos/metabolismo
8.
Protein Sci ; 27(12): 2101-2109, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291643

RESUMO

Apolipoprotein A-I (ApoA-I)-related amyloidosis is a rare disease caused by missense mutations in the APOA1 gene. These mutations lead to protein aggregation and abnormal accumulation of ApoA-I amyloid fibrils in heart, liver, kidneys, skin, nerves, ovaries, or testes. Consequently, the carriers are at risk of single- or multi-organ failure and of need of organ transplantation. Understanding the basic molecular structure and function of ApoA-I amyloidogenic variants, as well as their biological effects, is, therefore, of great interest. However, the intrinsic low stability of this type of proteins makes their overexpression and purification difficult. To overcome this barrier, we here describe an optimized production and purification procedure for human ApoA-I amyloidogenic proteins that efficiently provides between 46 mg and 91 mg (depending on the protein variant) of pure protein per liter of Escherichia coli culture. Structural integrity of the amyloidogenic and native ApoA-I proteins were verified by circular dichroism spectroscopy and intrinsic fluorescence analysis, and preserved functionality was demonstrated by use of a lipid clearance assay as well as by reconstitution of high-density lipoprotein (HDL) particles. In conclusion, the use of the described high-yield protein production system to obtain amyloidogenic ApoA-I proteins, and their native counterpart, will enable molecular and cellular experimental studies aimed to explain the molecular basis for this rare disease.


Assuntos
Apolipoproteína A-I/biossíntese , Escherichia coli/metabolismo , Variação Genética , Proteínas Recombinantes/biossíntese , Apolipoproteína A-I/genética , Apolipoproteína A-I/isolamento & purificação , Escherichia coli/genética , Variação Genética/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2822-2834, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802959

RESUMO

Prolonged hyperglycemia in poorly controlled diabetes leads to an increase in reactive glucose metabolites that covalently modify proteins by non-enzymatic glycation reactions. Apolipoprotein A-I (apoA-I) of high-density lipoprotein (HDL) is one of the proteins that becomes glycated in hyperglycemia. The impact of glycation on apoA-I protein structure and function in lipid and glucose metabolism were investigated. ApoA-I was chemically glycated by two different glucose metabolites (methylglyoxal and glycolaldehyde). Synchrotron radiation and conventional circular dichroism spectroscopy were used to study apoA-I structure and stability. The ability to bind lipids was measured by lipid-clearance assay and native gel analysis, and cholesterol efflux was measured by using lipid-laden J774 macrophages. Diet induced obese mice with established insulin resistance, L6 rat and C2C12 mouse myocytes, as well as INS-1E rat insulinoma cells, were used to determine in vivo and in vitro glucose uptake and insulin secretion. Site-specific, covalent modifications of apoA-I (lysines or arginines) led to altered protein structure, reduced lipid binding capability and a reduced ability to catalyze cholesterol efflux from macrophages, partly in a modification-specific manner. The stimulatory effects of apoA-I on the in vivo glucose clearance were negatively affected when apoA-I was modified with methylglyoxal, but not with glycolaldehyde. The in vitro data showed that both glucose uptake in muscle cells and insulin secretion from beta cells were affected. Taken together, glycation modifications impair the apoA-I protein functionality in lipid and glucose metabolism, which is expected to have implications for diabetes patients with poorly controlled blood glucose.


Assuntos
Apolipoproteína A-I/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Acetaldeído/análogos & derivados , Acetaldeído/farmacologia , Animais , Apolipoproteína A-I/química , Glicemia/efeitos dos fármacos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Linhagem Celular , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Glicosilação/efeitos dos fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
Sci Rep ; 7(1): 13540, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051568

RESUMO

Apolipoprotein A-I (apoA-I) in high-density lipoprotein (HDL) provides cardiovascular protection. Synchrotron radiation circular dichroism (SRCD) spectroscopy was used to analyze the dynamic solution structure of the apoA-I protein in the apo- and HDL-states and the protein structure conversion in HDL formation. Wild-type apoA-I protein was compared to human variants that either are protective (R173C, Milano) or lead to increased risk for ischaemic heart disease (A164S). Comparable secondary structure distributions in the HDL particles, including significant levels of beta strand/turn, were observed. ApoA-I Milano in HDL displayed larger size heterogeneity, increased protein flexibility, and an altered lipid-binding profile, whereas the apoA-I A164S in HDL showed decrease thermal stability, potentially linking the intrinsic HDL propensities of the variants to disease risk.


Assuntos
Apolipoproteína A-I/química , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Dicroísmo Circular , Humanos , Lipoproteínas HDL/química , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica em Folha beta , Estabilidade Proteica , Síncrotrons , Temperatura de Transição
11.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3038-3048, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28887204

RESUMO

Twenty Apolipoprotein A-I (ApoA-I) variants are responsible for a systemic hereditary amyloidosis in which protein fibrils can accumulate in different organs, leading to their failure. Several ApoA-I amyloidogenic mutations are also associated with hypoalphalipoproteinemia, low ApoA-I and high-density lipoprotein (HDL)-cholesterol plasma levels; however, subjects affected by ApoA-I-related amyloidosis do not show a higher risk of cardiovascular diseases (CVD). The structural features, the lipid binding properties and the functionality of four ApoA-I amyloidogenic variants were therefore inspected in order to clarify the paradox observed in the clinical phenotype of the affected subjects. Our results show that ApoA-I amyloidogenic variants are characterized by a different oligomerization pattern and that the position of the mutation in the ApoA-I sequence affects the molecular structure of the formed HDL particles. Although lipidation increases ApoA-I proteins stability, all the amyloidogenic variants analyzed show a lower affinity for lipids, both in vitro and in ex vivo mouse serum. Interestingly, the lower efficiency at forming HDL particles is compensated by a higher efficiency at catalysing cholesterol efflux from macrophages. The decreased affinity of ApoA-I amyloidogenic variants for lipids, together with the increased efficiency in the cholesterol efflux process, could explain why, despite the unfavourable lipid profile, patients affected by ApoA-I related amyloidosis do not show a higher CVD risk.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , HDL-Colesterol/metabolismo , Colesterol/metabolismo , Dislipidemias/metabolismo , Amiloidose/metabolismo , Animais , Apolipoproteína A-I/genética , Sítios de Ligação , Colesterol/sangue , Humanos , Hipoalfalipoproteinemias/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Relação Estrutura-Atividade
12.
PLoS One ; 10(11): e0143915, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605794

RESUMO

Apolipoprotein A-I (apoA-I) is the main protein involved in the formation of high-density lipoprotein (HDL), it is the principal mediator of the reverse cholesterol transfer (RCT) pathway and provides cardio-protection. In addition to functional wild-type apoA-I, several variants have been shown to associate with hereditary amyloidosis. In this study we have performed biophysical and biochemical analyses of the structure and functional properties of the A164S variant of apoA-I (1:500 in the Danish general population), which is the first known mutation of apoA-I that leads to an increased risk of ischaemic heart disease (IHD), myocardial infarction and mortality without associated low HDL cholesterol levels. Despite the fact that epidemiologically IHD is associated with low plasma levels of HDL, the A164S mutation is linked to normal plasma levels of lipids, HDL and apoA-I, suggesting impaired functionality of this variant. Using biophysical techniques (e.g., circular dichroism spectroscopy and electron microscopy) to determine secondary structure, stability and pro-amyloidogenic property of the lipid free A164S apoA-I variant, our observations suggest similarity in structural properties between apoA-I WT and apoA-I A164S. However, the A164S apoA-I variant exhibits lower binding affinity to lipids but forms similar sized HDL particles to those produced by WT.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Animais , Apolipoproteína A-I/genética , Colesterol/metabolismo , Dicroísmo Circular , Variação Genética , Humanos , Macrófagos/metabolismo , Masculino , Modelos Moleculares , Mutação , Agregação Patológica de Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Ratos , Proteínas Recombinantes , Relação Estrutura-Atividade , Termodinâmica
13.
J Lipid Res ; 56(12): 2248-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26504176

RESUMO

ApoA-I, the main protein component of HDL, is suggested to be involved in metabolic homeostasis. We examined the effects of Milano, a naturally occurring ApoA-I variant, about which little mechanistic information is available. Remarkably, high-fat-fed mice treated with Milano displayed a rapid weight loss greater than ApoA-I WT treated mice, and a significantly reduced adipose tissue mass, without an inflammatory response. Further, lipolysis in adipose cells isolated from mice treated with either WT or Milano was increased. In primary rat adipose cells, Milano stimulated cholesterol efflux and increased glycerol release, independently of ß-adrenergic stimulation and phosphorylation of hormone sensitive lipase (Ser563) and perilipin (Ser522). Stimulation with Milano had a significantly greater effect on glycerol release compared with WT but similar effect on cholesterol efflux. Pharmacological inhibition or siRNA silencing of ABCA1 did not diminish Milano-stimulated lipolysis, although binding to the cell surface was decreased, as analyzed by fluorescence microscopy. Interestingly, methyl-ß-cyclodextrin, a well-described cholesterol acceptor, dose-dependently stimulated lipolysis. Together, these results suggest that decreased fat mass and increased lipolysis following Milano treatment in vivo is partly explained by a novel mechanism at the adipose cell level comprising stimulation of lipolysis independently of the canonical cAMP/protein kinase A signaling pathway.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Apolipoproteína A-I/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Lipólise/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Colesterol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
PLoS One ; 9(4): e96150, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755625

RESUMO

Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein (HDL) and a principal mediator of the reverse cholesterol transfer pathway. Variants of apoA-I have been shown to be associated with hereditary amyloidosis. We previously characterized the G26R and L178H variants that both possess decreased stability and increased fibril formation propensity. Here we investigate the Milano variant of apoAI (R173C; apoAI-M), which despite association with low plasma levels of HDL leads to low prevalence of cardiovascular disease in carriers of this mutation. The R173C substitution is located to a region (residues 170 to 178) that contains several fibrillogenic apoA-I variants, including the L178H variant, and therefore we investigated a potential fibrillogenic property of the apoAI-M protein. Despite the fact that apoAI-M shared several features with the L178H variant regarding increased helical content and low degree of ThT binding during prolonged incubation in physiological buffer, our electron microscopy analysis revealed no formation of fibrils. These results suggest that mutations inducing secondary structural changes may be beneficial in cases where fibril formation does not occur.


Assuntos
Apolipoproteína A-I/química , Amiloide/química , Amiloide/ultraestrutura , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/ultraestrutura , Benzotiazóis , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Agregados Proteicos , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Solubilidade , Tiazóis/química
15.
Biochemistry ; 52(34): 5800-8, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23906368

RESUMO

Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, is expressed in retinal photoreceptor cells and serves as a calcium sensor in vision. Ca²âº-induced conformational changes in recoverin cause extrusion of its covalently attached myristate (termed Ca²âº-myristoyl switch) that promotes translocation of recoverin to disk membranes during phototransduction in retinal rod cells. Here we report double electron-electron resonance (DEER) experiments on recoverin that probe Ca²âº-induced changes in distance as measured by the dipolar coupling between spin-labels strategically positioned at engineered cysteine residues on the protein surface. The DEER distance between nitroxide spin-labels attached at C39 and N120C is 2.5 ± 0.1 nm for Ca²âº-free recoverin and 3.7 ± 0.1 nm for Ca²âº-bound recoverin. An additional DEER distance (5-6 nm) observed for Ca²âº-bound recoverin may represent an intermolecular distance between C39 and N120. ¹5N NMR relaxation analysis and CW-EPR experiments both confirm that Ca²âº-bound recoverin forms a dimer at protein concentrations above 100 µM, whereas Ca²âº-free recoverin is monomeric. We propose that Ca²âº-induced dimerization of recoverin at the disk membrane surface may play a role in regulating Ca²âº-dependent phosphorylation of dimeric rhodopsin. The DEER approach will be useful for elucidating dimeric structures of NCS proteins in general for which Ca²âº-induced dimerization is functionally important but not well understood.


Assuntos
Cálcio/farmacologia , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Recoverina/química , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Espectroscopia de Ressonância Magnética , Ácidos Mirísticos/metabolismo , Recoverina/metabolismo , Marcadores de Spin
16.
Biochem Biophys Res Commun ; 436(3): 551-6, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23770362

RESUMO

In Saccharomyces cerevisiae, Pho89 mediates a cation-dependent transport of Pi across the plasma membrane. This integral membrane protein belongs to the Inorganic Phosphate Transporter (PiT) family, a group that includes the mammalian Na(+)/Pi cotransporters Pit1 and Pit2. Here we report that the Pichia pastoris expressed recombinant Pho89 was purified in the presence of Foscholine-12 and functionally reconstituted into proteoliposomes with a similar substrate specificity as observed in an intact cell system. The alpha-helical content of the Pho89 protein was estimated to 44%. EPR analysis showed that purified Pho89 protein undergoes conformational change upon addition of substrate.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/química , Transporte Biológico , Membrana Celular/química , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Pichia/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteolipídeos/química , Proteínas Recombinantes/química , Relação Estrutura-Atividade , Especificidade por Substrato
17.
J Lipid Res ; 54(5): 1275-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23471027

RESUMO

Lipid-free apoA-I and mature spherical HDL have been shown to induce glucose uptake in skeletal muscle. To exploit apoA-I and HDL states for diabetes therapy, further understanding of interaction between muscle and apoA-I is required. This study has examined whether nascent discoidal HDL, in which apoA-I attains a different conformation from mature HDL and lipid-free states, could induce muscle glucose uptake and whether a specific domain of apoA-I can mediate this effect. Using L6 myotubes stimulated with synthetic reconstituted discoidal HDL (rHDL), we show a glucose uptake effect comparable to insulin. Increased plasma membrane GLUT4 levels in ex vivo rHDL-stimulated myofibers from HA-GLUT4-GFP transgenic mice support this observation. rHDL increased phosphorylation of AMP kinase (AMPK) and acetyl-coA carboxylase (ACC) but not Akt. A survey of domain-specific peptides of apoA-I showed that the lipid-free C-terminal 190-243 fragment increases plasma membrane GLUT4, promotes glucose uptake, and activates AMPK signaling but not Akt. This may be explained by changes in α-helical content of 190-243 fragment versus full-length lipid-free apoA-I as assessed by circular dichroism spectroscopy. Discoidal HDL and the 190-243 peptide of apoA-I are potent agonists of glucose uptake in skeletal muscle, and the C-terminal α-helical content of apoA-I may be an important determinant of this effect.


Assuntos
Apolipoproteína A-I/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Peptídeos/farmacologia , Acetil-CoA Carboxilase/metabolismo , Adenilato Quinase/metabolismo , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/farmacologia , HDL-Colesterol/química , HDL-Colesterol/metabolismo , HDL-Colesterol/farmacologia , Insulina/química , Insulina/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Peptídeos/química
18.
PLoS One ; 7(11): e50513, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209766

RESUMO

OBJECTIVE: Postprandial hyperlipemia, characterized by increased circulating very low-density lipoproteins (VLDL) and circulating lipopolysaccharide (LPS), has been proposed as a mechanism of vascular injury. Our goal was to examine the interactions between postprandial lipoproteins, LPS, and apoE3 and apoE4 on monocyte activation. METHODS AND RESULTS: We showed that apoE3 complexed to phospholipid vesicles attenuates LPS-induced THP-1 monocyte cytokine expression, while apoE4 increases expression. ELISA revealed that apoE3 binds to LPS with higher affinity than apoE4. Electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels placed on specific amino acids of apoE3 showed that LPS interferes with conformational changes normally associated with lipid binding. Specifically, compared to apoE4, apoE bearing the E3-like R112→Ser mutation displays increased self association when exposed to LPS, consistent with a stronger apoE3-LPS interaction. Additionally, lipolysis of fasting VLDL from normal human donors attenuated LPS-induced TNFα secretion from monocytes to a greater extent than postprandial VLDL, an effect partially reversed by blocking apoE. This effect was reproduced using fasting VLDL lipolysis products from e3/e3 donors, but not from e4/e4 subjects, suggesting that apoE3 on fasting VLDL prevents LPS-induced inflammation more readily than apoE4. CONCLUSION: Postprandial apoE isoform and conformational changes associated with VLDL dramatically modulate vascular inflammation.


Assuntos
Apolipoproteínas E/química , Apolipoproteínas E/metabolismo , Lipólise/efeitos dos fármacos , Lipoproteínas VLDL/metabolismo , Monócitos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Adolescente , Adulto , Apolipoproteína E3/química , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacologia , Apolipoproteína E4/química , Apolipoproteína E4/metabolismo , Apolipoproteína E4/farmacologia , Apolipoproteínas E/farmacologia , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lipopolissacarídeos , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Isoformas de Proteínas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
19.
BMC Biochem ; 13: 11, 2012 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-22726655

RESUMO

BACKGROUND: The Gtr1 protein of Saccharomyces cerevisiae is a member of the RagA subfamily of the Ras-like small GTPase superfamily. Gtr1 has been implicated in various cellular processes. Particularly, the Switch regions in the GTPase domain of Gtr1 are essential for TORC1 activation and amino acid signaling. Therefore, knowledge about the biochemical activity of Gtr1 is required to understand its mode of action and regulation. RESULTS: By employing tryptophan fluorescence analysis and radioactive GTPase assays, we demonstrate that Gtr1 can adopt two distinct GDP- and GTP-bound conformations, and that it hydrolyses GTP much slower than Ras proteins. Using cysteine mutagenesis of Arginine-37 and Valine-67, residues at the Switch I and II regions, respectively, we show altered GTPase activity and associated conformational changes as compared to the wild type protein and the cysteine-less mutant. CONCLUSIONS: The extremely low intrinsic GTPase activity of Gtr1 implies requirement for interaction with activating proteins to support its physiological function. These findings as well as the altered properties obtained by mutagenesis in the Switch regions provide insights into the function of Gtr1 and its homologues in yeast and mammals.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta
20.
NMR Biomed ; 24(7): 916-24, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21264979

RESUMO

Coronary disease risk increases inversely with high-density lipoprotein (HDL) level. The measurement of the biodistribution and clearance of HDL in vivo, however, has posed a technical challenge. This study presents an approach to the development of a lipoprotein MRI agent by linking gadolinium methanethiosulfonate (Gd[MTS-ADO3A]) to a selective cysteine mutation in position 55 of apo AI, the major protein of HDL. The contrast agent targets both liver and kidney, the sites of HDL catabolism, whereas the standard MRI contrast agent, gadolinium-diethylenetriaminepentaacetic acid-bismethylamide (GdDTPA-BMA, gadodiamide), enhances only the kidney image. Using a modified apolipoprotein AI to create an HDL contrast agent provides a new approach to investigate HDL biodistribution, metabolism and regulation in vivo.


Assuntos
Apolipoproteína A-I/metabolismo , Gadolínio/metabolismo , Lipoproteínas HDL/metabolismo , Imageamento por Ressonância Magnética/métodos , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Meios de Contraste/química , Meios de Contraste/metabolismo , Doença das Coronárias/metabolismo , Gadolínio/química , Humanos , Rim/anatomia & histologia , Rim/metabolismo , Lipoproteínas HDL/química , Fígado/anatomia & histologia , Fígado/metabolismo , Masculino , Mesilatos/química , Mesilatos/metabolismo , Camundongos , Modelos Moleculares , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA