Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 46(10): 1892-1900, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933445

RESUMO

AIMS/HYPOTHESIS: Translocation of bacterial debris from the gut causes metabolic endotoxemia (ME) that results in insulin resistance, and may be on the causal pathway to obesity-related type 2 diabetes. To guide interventions against ME we tested two hypothesised mechanisms for lipopolysaccharide (LPS) ingress: a leaky gut and chylomicron-associated transfer following a high-fat meal. METHODS: In lean women (n = 48; fat mass index (FMI) 9.6 kg/m2), women with obesity (n = 62; FMI 23.6 kg/m2) and women with obesity-diabetes (n = 38; FMI 24.9 kg/m2) we used the lactulose-mannitol dual-sugar permeability test (LM ratio) to assess gut integrity. Markers of ME (LPS, EndoCAb IgG and IgM, IL-6, CD14 and lipoprotein binding protein) were assessed at baseline, 2 h and 5 h after a standardised 49 g fat-containing mixed meal. mRNA expression of markers of inflammation, macrophage activation and lipid metabolism were measured in peri-umbilical adipose tissue (AT) biopsies. RESULTS: The LM ratio did not differ between groups. LPS levels were 57% higher in the obesity-diabetes group (P < 0.001), but, contrary to the chylomicron transfer hypothesis, levels significantly declined following the high-fat challenge. EndoCAb IgM was markedly lower in women with obesity and women with obesity-diabetes. mRNA levels of inflammatory markers in adipose tissue were consistent with the prior concept that fat soluble LPS in AT attracts and activates macrophages. CONCLUSIONS/INTERPRETATION: Raised levels of LPS and IL-6 in women with obesity-diabetes and evidence of macrophage activation in adipose tissue support the concept of metabolic endotoxemia-mediated inflammation, but we found no evidence for abnormal gut permeability or chylomicron-associated post-prandial translocation of LPS. Instead, the markedly lower EndoCAb IgM levels indicate a failure in sequestration and detoxification.


Assuntos
Diabetes Mellitus Tipo 2 , Endotoxemia , Quilomícrons , Diabetes Mellitus Tipo 2/complicações , Endotoxemia/etiologia , Feminino , Gâmbia , Humanos , Imunoglobulina G , Imunoglobulina M , Inflamação/metabolismo , Interleucina-6 , Lactulose , Lipopolissacarídeos/metabolismo , Lipoproteínas/metabolismo , Manitol , Obesidade/metabolismo , RNA Mensageiro
2.
Curr Opin Lipidol ; 33(3): 193-198, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165232

RESUMO

PURPOSE OF REVIEW: The turnover of fatty acids (FAs) at the sn-2 position of phospholipids is mediated by the reciprocal actions of phospholipases A2 and lyso-PL acyltransferases (LPLAT). LPCAT3, a major LPLAT isoform, exhibits a strong specificity for polyunsaturated FAs s (PUFAs). Although the enzyme was originally studied in the context of cardiometabolism, recent investigations have shed light on the role of LPCAT3 in other tissues such as skeletal muscle and in unexpected biological processes such as cell death and oncogenesis. RECENT FINDINGS: The three-dimensional structure of LPCAT3 has been elucidated allowing further understanding of the mechanism of the acylation reaction as well as the substrate specificity of the enzyme. In skeletal muscle, LPCAT3-mediated phospholipid remodeling modulates membrane domain clustering and insulin signalingLPCAT3 plays an important role in the process of ferroptosis by modulating the PUFA content of phospholipids and possibly of plasmalogens.In tumor-associated macrophages, LPCAT3 can prevent ER stress induced by the tumor microenvironment and may equally modulate antitumor immunity. SUMMARY: LPCAT3 is an attractive therapeutic target in the cardiometabolic disorders. Nevertheless, the involvement of LPCAT3 in processes such as cell death and oncogenesis demands caution with respect to the potential deleterious effects of enzyme modulation.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Fosfolipídeos , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Aciltransferases , Carcinogênese , Humanos , Fosfatidilcolina-Esterol O-Aciltransferase , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Microambiente Tumoral
3.
Am J Transplant ; 22(5): 1350-1361, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35038785

RESUMO

Acute graft-versus-host disease (aGVHD) is a major limitation of the therapeutic potential of allogeneic hematopoietic cell transplantation. Lipopolysaccharides (LPS) derived from intestinal gram-negative bacteria are well-known aGVHD triggers and amplifiers. Here, we explored the LPS metabolism in aGVHD mouse models using an innovative quantification method. We demonstrated that systemic LPS accumulation after transplantation was due, at least partly, to a defect in its clearance through lipoprotein-mediated transport to the liver (i.e., the so-called reverse LPS transport). After transplantation, reduced circulating HDL concentration impaired LPS neutralization and elimination through biliary flux. Accordingly, HDL-deficient (Apoa1tm1Unc ) recipient mice developed exacerbated aGVHD. Repeated administration of HDL isolated from human plasma significantly decreased the mortality and the severity of aGVHD. While the potential role of HDL in scavenging circulating LPS was examined in this study, it appears that HDL plays a more direct immunomodulatory role by limiting or controlling aGVHD. Notably, HDL infusion mitigated liver aGVHD by diminishing immune infiltration (e.g., interferon-γ-secreting CD8+ T cells and non-resident macrophages), systemic and local inflammation (notably cholangitis). Hence, our results revealed the interest of HDL-based therapies in the prevention of aGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Aguda , Animais , Linfócitos T CD8-Positivos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Lipopolissacarídeos/metabolismo , Lipoproteínas HDL/metabolismo , Camundongos , Transplante Homólogo
4.
Front Med (Lausanne) ; 8: 749405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778311

RESUMO

Objectives: To investigate the association of plasma LPS mass with mortality and inflammation in patients with peritonitis-induced septic shock (SS). Design: Longitudinal endotoxin and inflammatory parameters in a multicentric cohort of SS. Patients: Protocolized post-operative parameters of 187 SS patients collected at T1 (12 h max post-surgery) and T4 (24 h after T1). Intervention: Post-hoc analysis of ABDOMIX trial. Measurements and Results: Plasma concentration of LPS mass as determined by HPLC-MS/MS analysis of 3-hydroxymyristate, activity of phospholipid transfer protein (PLTP), lipids, lipoproteins, IL-6, and IL-10. Cohort was divided in low (LLPS) and high (HLPS) LPS levels. The predictive value for mortality was tested by multivariate analysis. HLPS and LLPS had similar SAPSII (58 [48.5; 67]) and SOFA (8 [6.5; 9]), but HLPS showed higher death and LPS to PLTP ratio (p < 0.01). LPS was stable in HLPS, but it increased in LLPS with a greater decrease in IL-6 (p < 0.01). Dead patients had a higher T1 LPS (p = 0.02), IL-6 (<0.01), IL-10 (=0.01), and day 3 SOFA score (p = 0.01) than survivors. In the group of SAPSII > median, the risk of death in HLPS (38%) was higher than in LLPS (24%; p < 0.01). The 28-day death was associated only with SAPSII (OR 1.06 [1.02; 1.09]) and HLPS (OR 2.47 [1; 6.11]) in the multivariate model. In HLPS group, high PLTP was associated with lower plasma levels of IL-6 (p = 0.02) and IL-10 (p = 0.05). Conclusions: Combination of high LPS mass concentration and high SAPS II is associated with elevated mortality in peritonitis-induced SS patients.

5.
Br J Pharmacol ; 178(16): 3124-3139, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33377180

RESUMO

BACKGROUND AND PURPOSE: Subset of macrophages within the atheroma plaque displays a high glucose uptake activity. Nevertheless, the molecular mechanisms and the pathophysiological significance of this high glucose need remain unclear. While the role for hypoxia and hypoxia inducible factor 1α has been demonstrated, the contribution of lipid micro-environment and more specifically oxysterols is yet to be explored. EXPERIMENTAL APPROACH: Human macrophages were conditioned in the presence of homogenates from human carotid plaques, and expression of genes involved in glucose metabolism was quantified. Correlative analyses between gene expression and the oxysterol composition of plaques were performed. KEY RESULTS: Conditioning of human macrophages by plaque homogenates induces expression of several genes involved in glucose uptake and glycolysis including glucose transporter 1 (SLC2A1) and hexokinases 2 and 3 (HK2 and HK3). This activation is significantly correlated to the oxysterol content of the plaque samples and is associated with a significant increase in the glycolytic activity of the cells. Pharmacological inverse agonist of the oxysterol receptor liver X receptor (LXR) partially reverses the induction of glycolysis genes without affecting macrophage glycolytic activity. Chromatin immunoprecipitation analysis confirms the implication of LXR in the regulation of SLC2A1 and HK2 genes. CONCLUSION AND IMPLICATIONS: While our work supports the role of oxysterols and the LXR in the modulation of macrophage metabolism in atheroma plaques, it also highlights some LXR-independent effects of plaques samples. Finally, this study identifies hexokinase 3 as a promising target in the context of atherosclerosis. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Assuntos
Aterosclerose , Oxisteróis , Aterosclerose/genética , Glicólise , Humanos , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo
6.
JCI Insight ; 5(24)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33252359

RESUMO

In this work, we have explored natural unmodified low- and high-density lipoproteins (LDL and HDL, respectively) as selective delivery vectors in colorectal cancer therapy. We show in vitro in cultured cells and in vivo (NanoSPECT/CT) in the CT-26 mice colorectal cancer model that LDLs are mainly taken up by cancer cells, while HDLs are preferentially taken up by macrophages. We loaded LDLs with cisplatin and HDLs with the heat shock protein-70 inhibitor AC1LINNC, turning them into a pair of "Trojan horses" delivering drugs selectively to their target cells as demonstrated in vitro in human colorectal cancer cells and macrophages, and in vivo. Coupling of the drugs to lipoproteins and stability was assessed by mass spectometry and raman spectrometry analysis. Cisplatin vectorized in LDLs led to better tumor growth suppression with strongly reduced adverse effects such as renal or liver toxicity. AC1LINNC vectorized into HDLs induced a strong oxidative burst in macrophages and innate anticancer immune response. Cumulative antitumor effect was observed for both drug-loaded lipoproteins. Altogether, our data show that lipoproteins from patient blood can be used as natural nanocarriers allowing cell-specific targeting, paving the way toward more efficient, safer, and personalized use of chemotherapeutic and immunotherapeutic drugs in cancer.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipoproteínas HDL/farmacologia , Lipoproteínas LDL/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Humanos , Lipoproteínas/sangue , Lipoproteínas/química , Lipoproteínas HDL/sangue , Lipoproteínas HDL/química , Lipoproteínas LDL/sangue , Lipoproteínas LDL/química , Macrófagos/efeitos dos fármacos , Camundongos , Análise Espectral Raman/métodos
7.
J Nutr Biochem ; 84: 108415, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645655

RESUMO

The risks of nonalcoholic steatohepatitis (NASH) and deficiency in vitamin B12 and folate (methyl donor deficiency, MDD) are increased in inflammatory bowel disease (IBD). We investigated the influence of MDD on NASH in rats with DSS-induced colitis. Two-month-old male Wistar rats were subjected to MDD diet and/or ingestion of DSS and compared to control animals. We studied steatosis, inflammation, fibrosis, plasma levels of metabolic markers, cytokines and lipopolysaccharide, and inflammatory pathways in liver. MDD triggered a severe macrovesicular steatosis with inflammation in DSS animals that was not observed in animals subjected to DSS or MDD only. The macrovesicular steatosis was closely correlated to folate, vitamin B12, homocysteine plasma level and liver S-adenosyl methionine/S-adenosyl homocysteine (SAM/SAH) ratio. Liver inflammation was evidenced by activation of nuclear factor kappa B (NFκB) pathway and nuclear translocation of NFκB phospho-p65. MDD worsened the increase of interleukin 1-beta (IL-1ß) and abolished the increase of IL10 produced by DSS colitis. It increased monocyte chemoattractant protein 1 (MCP-1). MDD triggers liver macrovesicular steatosis and inflammation through imbalanced expression of IL-1ß vs. IL10 and increase of MCP-1 in DSS colitis. Our results suggest evaluating whether IBD patients with MDD and increase of MCP-1 are at higher risk of NASH.


Assuntos
Colite/complicações , Fígado Gorduroso/etiologia , Deficiência de Ácido Fólico/complicações , Inflamação/complicações , Fígado/patologia , Deficiência de Vitamina B 12/complicações , Animais , Colite/induzido quimicamente , Colite/patologia , Fígado Gorduroso/patologia , Deficiência de Ácido Fólico/patologia , Inflamação/patologia , Masculino , Ratos Wistar , Sulfatos/efeitos adversos , Deficiência de Vitamina B 12/patologia
8.
Cell Rep ; 31(7): 107665, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433974

RESUMO

Low-grade inflammation is constitutive of atherosclerosis, and anti-inflammatory therapy inhibiting interleukin-1ß (IL-1ß) reduces the rate of cardiovascular events. While cholesterol accumulation in atheroma plaque and macrophages is a major driver of the inflammatory process, the role of the LXR cholesterol sensors remains to be clarified. Murine and human macrophages were treated with LXR agonists for 48 h before Toll-like receptor (TLR) stimulation. Unexpectedly, we observe that, among other cytokines, LXR agonists selectively increase IL1B mRNA levels independently of TLR activation. This effect, restricted to human macrophages, is mediated by activation of HIF-1α through LXR. Accordingly, LXR agonists also potentiate other HIF-1α-dependent pathways, such as glycolysis. Treatment of human macrophages with carotid plaque homogenates also leads to induction of IL1B in an LXR-dependent manner. Thus, our work discloses a mechanism by which cholesterol and oxysterols trigger inflammation in atherosclerosis. This suggests perspectives to target IL-1ß production in atherosclerotic patients.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-1beta/biossíntese , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Animais , Aterosclerose/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Receptores X do Fígado/agonistas , Receptores X do Fígado/antagonistas & inibidores , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Nanoscale ; 12(17): 9590-9602, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314992

RESUMO

Inflammatory bowel disease (IBD) refers to progressive inflammatory disorders that impair the gastrointestinal tract's structure and function. Given their selective accumulation in inflamed tissues, nanoparticles are promising drug delivery systems for IBD treatment. The hypothesis here was that drug-free nanoscaled cationic ammonio methacrylate copolymers (AMCNP) may have a beneficial therapeutic effect in murine TNBS-induced colitis. Type A and B AMCNP (RLNP and RSNP, respectively) were prepared and characterized in vitro, and were rectally administered in two concentrations (5 and 25 mg ml-1) for the treatment of two grades of murine experimental colitis. The impact of the nanoparticles upon the inflammatory markers, circulating LPS, intestinal permeability and colonic leukocyte populations was examined. Both RLNP and RSNP led to a significant mitigation of mild to moderate experimental colitis, as evident from the substantial reduction of myeloperoxidase (MPO) and alkaline phosphatase (AP) activities (more than two-fold, P < 0.05) and various pro-inflammatory cytokine concentrations (TNF-α, IL-1ß, IL-6, IL-12). The best therapeutic efficiency was observed when the particles were used at 5 mg ml-1, while the more cationic RLNP performed superior. When used against a severe grade of colitis, RLNP (5 mg ml-1) resulted in a significant decrease of tissue MPO and TNF-α. It was found that treatment with AMCNP resulted in significant intestinal immune cell depletion, intestinal barrier function improvement, and 1.5-2.5 times reduction of the systemic endotoxin concentration. These findings highlighted the fact that nanoscaling endows the cationic amphiphilic AMCs unique therapeutic properties, which help mitigate murine experimental colitis in the absence of any drug load. The results also provided a glimpse of possible underlying mechanisms through which nanoscaled AMCs might have exerted their therapeutic effect within this context.


Assuntos
Resinas Acrílicas/química , Resinas Acrílicas/uso terapêutico , Colite/tratamento farmacológico , Nanosferas/química , Nanosferas/uso terapêutico , Resinas Acrílicas/administração & dosagem , Resinas Acrílicas/farmacocinética , Administração Retal , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colo/efeitos dos fármacos , Colo/imunologia , Colo/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Lipopolissacarídeos/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Nanosferas/administração & dosagem , Permeabilidade
10.
Sci Rep ; 9(1): 9134, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235831

RESUMO

Obesity may not be consistently associated with metabolic disorders and mortality later in life, prompting exploration of the challenging concept of healthy obesity. Here, the consumption of a high-fat/high-sucrose (HF/HS) diet produces hyperglycaemia and hypercholesterolaemia, increases oxidative stress, increases endotoxaemia, expands adipose tissue (with enlarged adipocytes, enhanced macrophage infiltration and the accumulation of cholesterol and oxysterols), and reduces the median lifespan of obese mice. Despite the persistence of obesity, supplementation with a polyphenol-rich plant extract (PRPE) improves plasma lipid levels and endotoxaemia, prevents macrophage recruitment to adipose tissues, reduces adipose accumulation of cholesterol and cholesterol oxides, and extends the median lifespan. PRPE drives the normalization of the HF/HS-mediated functional enrichment of genes associated with immunity and inflammation (in particular the response to lipopolysaccharides). The long-term limitation of immune cell infiltration in adipose tissue by PRPE increases the lifespan through a mechanism independent of body weight and fat storage and constitutes the hallmark of a healthy adiposity trait.


Assuntos
Adiposidade/efeitos dos fármacos , Dieta , Longevidade/efeitos dos fármacos , Obesidade/patologia , Obesidade/fisiopatologia , Extratos Vegetais/farmacologia , Polifenóis/análise , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Extratos Vegetais/química
11.
Atherosclerosis ; 275: 409-418, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866392

RESUMO

BACKGROUND AND AIMS: LPCAT3 plays a major role in phospholipid metabolism in the liver and intestine. However, the impact of LPCAT3 on hematopoietic cell and macrophage functions has yet to be described. Our aim was to understand the functions of LPCAT3 in macrophages and to investigate whether LPCAT3 deficiency in hematopoietic cells may affect atherosclerosis development. METHODS: Mice with constitutive Lpcat3 deficiency (Lpcat3-/-) were generated. We used fetal hematopoietic liver cells to generate WT and Lpcat3-/- macrophages in vitro and to perform hematopoietic cell transplantation in recipient Ldlr-/- mice. RESULTS: Lpcat3-deficient macrophages displayed major reductions in the arachidonate content of phosphatidylcholines, phosphatidylethanolamines and, unexpectedly, plasmalogens. These changes were associated with altered cholesterol homeostasis, including an increase in the ratio of free to esterified cholesterol and a reduction in cholesterol efflux in Lpcat3-/- macrophages. This correlated with the inhibition of some LXR-regulated pathways, related to altered cellular availability of the arachidonic acid. Indeed, LPCAT3 deficiency was associated with decreased Abca1, Abcg1 and ApoE mRNA levels in fetal liver cells derived macrophages. In vivo, these changes translated into a significant increase in atherosclerotic lesions in Ldlr-/- mice with hematopoietic LPCAT3 deficiency. CONCLUSIONS: This study identifies LPCAT3 as a key factor in the control of phospholipid homeostasis and arachidonate availability in myeloid cells and underlines a new role for LPCAT3 in plasmalogen metabolism. Moreover, our work strengthens the link between phospholipid and sterol metabolism in hematopoietic cells, with significant consequences on nuclear receptor-regulated pathways and atherosclerosis development.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/deficiência , Aterosclerose/enzimologia , Colesterol/metabolismo , Células-Tronco Hematopoéticas/enzimologia , Macrófagos/enzimologia , Fosfolipídeos/metabolismo , Placa Aterosclerótica , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ácido Araquidônico/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Predisposição Genética para Doença , Transplante de Células-Tronco Hematopoéticas , Receptores X do Fígado/metabolismo , Macrófagos/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética
12.
Cell Rep ; 21(5): 1160-1168, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29091756

RESUMO

Glucagon-like peptide 1 (GLP-1) is a hormone released from enteroendocrine L cells. Although first described as a glucoregulatory incretin hormone, GLP-1 also suppresses inflammation and promotes mucosal integrity. Here, we demonstrate that plasma GLP-1 levels are rapidly increased by lipopolysaccharide (LPS) administration in mice via a Toll-like receptor 4 (TLR4)-dependent mechanism. Experimental manipulation of gut barrier integrity after dextran sodium sulfate treatment, or via ischemia/reperfusion experiments in mice, triggered a rapid rise in circulating GLP-1. This phenomenon was detected prior to measurable changes in inflammatory status and plasma cytokine and LPS levels. In human subjects, LPS administration also induced GLP-1 secretion. Furthermore, GLP-1 levels were rapidly increased following the induction of ischemia in the human intestine. These findings expand traditional concepts of enteroendocrine L cell biology to encompass the sensing of inflammatory stimuli and compromised mucosal integrity, linking glucagon-like peptide secretion to gut inflammation.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Íleo/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Células Enteroendócrinas/citologia , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Humanos , Íleo/metabolismo , Interleucina-6/deficiência , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ácidos Mirísticos/sangue , Proglucagon/metabolismo , Pró-Proteína Convertase 1/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Adulto Jovem
13.
Front Neurosci ; 11: 245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515677

RESUMO

The polysialic acid (PSA) is a large glycan that is added to cell-surface proteins during their post-translational maturation. In the brain, PSA modulates distances between cells and controls the plasticity of the nervous system. In the hypothalamus, PSA is involved in many aspects of energy balance including food intake, osmoregulation, circadian rhythm, and sleep. In this work, we investigated the role of hypothalamic PSA in the regulation of plasma cholesterol levels and distribution. We report that HFD consumption in mice rapidly increased plasma cholesterol, including VLDL, LDL, and HDL-cholesterol. Although plasma VLDL-cholesterol was normalized within the first week, LDL and HDL were still elevated after 2 weeks upon HFD. Importantly, we found that hypothalamic PSA removal aggravated LDL elevation and reduced HDL levels upon HFD. These results indicate that hypothalamic PSA controls plasma lipoprotein profile by circumventing the rise of LDL-to-HDL cholesterol ratio in plasma during overfeeding. Although mechanisms by which hypothalamic PSA controls plasma cholesterol homeostasis remains to be elucidated, these findings also suggest that low level of hypothalamic PSA might be a risk factor for dyslipidemia and cardiovascular diseases.

14.
Curr Opin Lipidol ; 28(1): 19-26, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870652

RESUMO

PURPOSE OF REVIEW: Recent studies have highlighted that macrophages dynamically and autonomously handle all the facets of fatty acid (FA) metabolism including FA oxidation and FA synthesis as well as the synthesis of monounsaturated FAs and long chain n-3 and n-6 polyunsaturated FAs. RECENT FINDINGS: Macrophage M2 polarization is associated with an increase of FA oxidation. However, whether increased FA oxidation simply correlates with or is required for M2 polarization needs to be further evaluated. Macrophage M1 polarization is associated with the activation of FA synthesis, which directly contributes to the inflammatory response and affects cholesterol homeostasis and neutral lipid accumulation. Finally, recent evidences suggest that macrophages are able to autonomously produce signaling monounsaturated FAs, such as palmitoleic acid (C16 : 1 n-7), and long chain n-3 and n-6 polyunsaturated FAs, such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. This pathway is regulated by liver X receptors and has significant consequences on inflammation and on the FA composition of atheroma plaques. SUMMARY: These studies shed new light on the tight relationship between FA metabolism, macrophage polarization, and M1/M2 macrophage functions. These processes may have major consequences for atherosclerosis pathogenesis as well as other metabolic disorders.


Assuntos
Ácidos Graxos/metabolismo , Macrófagos/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Animais , Ácidos Graxos/biossíntese , Humanos , Oxirredução
15.
Blood ; 128(23): 2694-2707, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27702801

RESUMO

Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach.


Assuntos
Antineoplásicos/farmacologia , Colesterol/metabolismo , Células Dendríticas/metabolismo , Receptores X do Fígado/agonistas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/patologia , Feminino , Humanos , Interleucina-3/metabolismo , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Haematologica ; 101(3): e72-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26635040

Assuntos
Plaquetas/imunologia , Micropartículas Derivadas de Células/imunologia , Células Dendríticas/imunologia , Receptores X do Fígado/imunologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/imunologia , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/imunologia , Benzoatos/farmacologia , Benzilaminas/farmacologia , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Micropartículas Derivadas de Células/química , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Regulação da Expressão Gênica , Humanos , Hidrocarbonetos Fluorados/farmacologia , Hidroxicolesteróis/farmacologia , Imidazóis/farmacologia , Imunidade Inata , Receptores X do Fígado/agonistas , Receptores X do Fígado/antagonistas & inibidores , Receptores X do Fígado/genética , NF-kappa B/genética , NF-kappa B/imunologia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Fenilenodiaminas/farmacologia , Cultura Primária de Células , Receptores Acoplados a Proteínas G , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/imunologia , Sulfonamidas/farmacologia , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
J Lipid Res ; 56(7): 1363-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26023073

RESUMO

Quantitation of plasma lipopolysaccharides (LPSs) might be used to document Gram-negative bacterial infection. In the present work, LPS-derived 3-hydroxymyristate was extracted from plasma samples with an organic solvent, separated by reversed phase HPLC, and quantitated by MS/MS. This mass assay was combined with the limulus amebocyte lysate (LAL) bioassay to monitor neutralization of LPS activity in biological samples. The described HPLC/MS/MS method is a reliable, practical, accurate, and sensitive tool to quantitate LPS. The combination of the LAL and HPLC/MS/MS analyses provided new evidence for the intrinsic capacity of plasma lipoproteins and phospholipid transfer protein to neutralize the activity of LPS. In a subset of patients with systemic inflammatory response syndrome, with documented infection but with a negative plasma LAL test, significant amounts of LPS were measured by the HPLC/MS/MS method. Patients with the highest plasma LPS concentration were more severely ill. HPLC/MS/MS is a relevant method to quantitate endotoxin in a sample, to assess the efficacy of LPS neutralization, and to evaluate the proinflammatory potential of LPS in vivo.


Assuntos
Análise Química do Sangue/métodos , Caranguejos Ferradura , Lipopolissacarídeos/sangue , Proteínas de Membrana/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
18.
Arterioscler Thromb Vasc Biol ; 35(6): 1357-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25838428

RESUMO

OBJECTIVE: Liver X receptors (LXRs) modulate cholesterol and fatty acid homeostasis as well as inflammation. This study aims to decipher the role of LXRs in the regulation of polyunsaturated fatty acid (PUFA) synthesis in macrophages in the context of atherosclerosis. APPROACH AND RESULTS: Transcriptomic analysis in human monocytes and macrophages was used to identify putative LXR target genes among enzymes involved in PUFA biosynthesis. In parallel, the consequences of LXR activation or LXR invalidation on PUFA synthesis and distribution were determined. Finally, we investigated the impact of LXR activation on PUFA metabolism in vivo in apolipoprotein E-deficient mice. mRNA levels of acyl-CoA synthase long-chain family member 3, fatty acid desaturases 1 and 2, and fatty acid elongase 5 were significantly increased in human macrophages after LXR agonist treatment, involving both direct and sterol responsive element binding protein-1-dependent mechanisms. Subsequently, pharmacological LXR agonist increased long chain PUFA synthesis and enhanced arachidonic acid content in the phospholipids of human macrophages. Increased fatty acid desaturases 1 and 2 and acyl-CoA synthase long-chain family member 3 mRNA levels as well as increased arachidonic acid to linoleic acid and docosahexaenoic acid to eicosapentaenoic acid ratios were also found in atheroma plaque and peritoneal foam cells from LXR agonist-treated mice. By contrast, murine LXR-deficient macrophages displayed reduced expression of fatty acid elongase 5, acyl-CoA synthase long-chain family member 3 and fatty acid desaturases 1, as well as decreased cellular levels of docosahexaenoic acid and arachidonic acid. CONCLUSIONS: Our results indicate that LXR activation triggers PUFA synthesis in macrophages, which results in significant alterations in the macrophage lipid composition. Moreover, we demonstrate here that LXR agonist treatment modulates PUFA metabolism in atherosclerotic arteries.


Assuntos
Aterosclerose/metabolismo , Ácidos Graxos Insaturados/biossíntese , Macrófagos/metabolismo , Receptores Nucleares Órfãos/metabolismo , Animais , Ácido Araquidônico/metabolismo , Artérias/metabolismo , Células Espumosas/metabolismo , Humanos , Receptores X do Fígado , Camundongos , Receptores Nucleares Órfãos/agonistas , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
19.
PLoS One ; 9(9): e106655, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25216115

RESUMO

In the search of new strategies to fight against obesity, we targeted a gene pathway involved in energy uptake. We have thus investigated the APOB mRNA editing protein (APOBEC1) gene pathway that is involved in fat absorption in the intestine. The APOB gene encodes two proteins, APOB100 and APOB48, via the editing of a single nucleotide in the APOB mRNA by the APOBEC1 enzyme. The APOB48 protein is mandatory for the synthesis of chylomicrons by intestinal cells to transport dietary lipids and cholesterol. We produced transgenic rabbits expressing permanently and ubiquitously a small hairpin RNA targeting the rabbit APOBEC1 mRNA. These rabbits exhibited a moderately but significantly reduced level of APOBEC1 gene expression in the intestine, a reduced level of editing of the APOB mRNA, a reduced level of synthesis of chylomicrons after a food challenge, a reduced total mass of body lipids and finally presented a sustained lean phenotype without any obvious physiological disorder. Interestingly, no compensatory mechanism opposed to the phenotype. These lean transgenic rabbits were crossed with transgenic rabbits expressing in the intestine the human APOBEC1 gene. Double transgenic animals did not present any lean phenotype, thus proving that the intestinal expression of the human APOBEC1 transgene was able to counterbalance the reduction of the rabbit APOBEC1 gene expression. Thus, a moderate reduction of the APOBEC1 dependent editing induces a lean phenotype at least in the rabbit species. This suggests that the APOBEC1 gene might be a novel target for obesity treatment.


Assuntos
Citidina Desaminase/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Interferência de RNA , Redução de Peso , Desaminase APOBEC-1 , Animais , Animais Geneticamente Modificados , Apolipoproteína B-48/sangue , Sequência de Bases , Colesterol/sangue , Dieta Hiperlipídica , Humanos , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Fenótipo , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Coelhos , Transgenes , Triglicerídeos/sangue
20.
Crit Care Med ; 42(5): 1065-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24413578

RESUMO

OBJECTIVES: Systemic inflammatory response syndrome and sepsis frequently occur after cardiac surgery with cardiopulmonary bypass. The aim of the present study was to investigate whether preoperative cholesterol levels can predict sepsis onset and postoperative complications in patients undergoing cardiac surgery with cardiopulmonary bypass. DESIGN: Prospective observational study. SETTING: Surgical ICU of a French university hospital. PATIENTS: Two hundred and seventeen consecutive patients older than 18 years admitted for planned cardiac surgery with cardiopulmonary bypass. INTERVENTIONS: Measurements of plasma blood lipids and inflammation markers before anesthesia induction (baseline), at cardiopulmonary bypass start, at cardiopulmonary bypass end, and 3 and 24 hours after cardiac surgery. Outcomes were compared in systemic inflammatory response syndrome patients with sepsis (n = 15), systemic inflammatory response syndrome patients without sepsis (n = 95), and non-systemic inflammatory response syndrome patients (n = 107). MEASUREMENTS AND MAIN RESULTS: A gradual decrease in plasma cholesterol concentration occurred during surgery with cardiopulmonary bypass but was no longer present after correction for hemodilution. Corrected cholesterol levels were significantly lower at baseline in sepsis patients than in other subgroups, and it remained lower in the sepsis group during and after cardiopulmonary bypass. With regard to sepsis, the discriminatory power of baseline cholesterol was fairly good as indicated by receiver operating characteristic curve analysis (area under the curve, 0.78; 95% CI, 0.72-0.84). The frequency of sepsis progressively decreased with increasing baseline cholesterol level quintiles (18.6% and 0% in the bottom and top quintiles, respectively, p = 0.005). In multivariate analysis, baseline cholesterol levels and cardiopulmonary bypass duration were significant and independent determinants of the 3-hour postcardiopulmonary bypass increase in concentrations of procalcitonin and interleukin-8, but not of interleukin-6. CONCLUSIONS: Low cholesterol levels before elective cardiac surgery with cardiopulmonary bypass may be a simple biomarker for the early identification of patients with a high risk of sepsis.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Ponte Cardiopulmonar/efeitos adversos , Colesterol/sangue , Complicações Pós-Operatórias/etiologia , Sepse/etiologia , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Idoso , Área Sob a Curva , Biomarcadores/análise , Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina , Cuidados Críticos , Citocinas/análise , Procedimentos Cirúrgicos Eletivos , Feminino , Humanos , Lipoproteínas/análise , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Estudos Prospectivos , Precursores de Proteínas/análise , Fatores de Risco , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA