Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417794

RESUMO

Genome-wide association studies in inflammatory bowel disease have identified risk loci in the orosomucoid-like protein 3/ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) gene to confer susceptibility to ulcerative colitis (UC), but the underlying functional relevance remains unexplored. Here, we found that a subpopulation of the UC patients who had higher disease activity shows enhanced expression of ORMDL3 compared to the patients with lower disease activity and the non-UC controls. We also found that the patients showing high ORMDL3 mRNA expression have elevated interleukin-1ß cytokine levels indicating positive correlation. Further, knockdown of ORMDL3 in the human monocyte-derived macrophages resulted in significantly reduced interleukin-1ß release. Mechanistically, we report for the first time that ORMDL3 contributes to a mounting inflammatory response via modulating mitochondrial morphology and activation of the NLRP3 inflammasome. Specifically, we observed an increased fragmentation of mitochondria and enhanced contacts with the endoplasmic reticulum (ER) during ORMDL3 over-expression, enabling efficient NLRP3 inflammasome activation. We show that ORMDL3 that was previously known to be localized in the ER also becomes localized to mitochondria-associated membranes and mitochondria during inflammatory conditions. Additionally, ORMDL3 interacts with mitochondrial dynamic regulating protein Fis-1 present in the mitochondria-associated membrane. Accordingly, knockdown of ORMDL3 in a dextran sodium sulfate -induced colitis mouse model showed reduced colitis severity. Taken together, we have uncovered a functional role for ORMDL3 in mounting inflammation during UC pathogenesis by modulating ER-mitochondrial contact and dynamics.


Assuntos
Colite Ulcerativa , Retículo Endoplasmático , Inflamassomos , Macrófagos , Proteínas de Membrana , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colite Ulcerativa/genética , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Inflamassomos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Masculino , Sulfato de Dextrana/toxicidade
3.
Metabolism ; 152: 155771, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184165

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) continues to pose a significant health challenge and is often diagnosed at advanced stages. Metabolic reprogramming is a hallmark of many cancer types, including HCC and it involves alterations in various metabolic or nutrient-sensing pathways within liver cells to facilitate the rapid growth and progression of tumours. However, the role of STAT3-NFκB in metabolic reprogramming is still not clear. APPROACH AND RESULTS: Diethylnitrosamine (DEN) administered animals showed decreased body weight and elevated level of serum enzymes. Also, Transmission electron microscopy (TEM) analysis revealed ultrastructural alterations. Increased phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated nuclear factor kappa B (p-NFκß), dynamin related protein 1 (Drp-1) and alpha-fetoprotein (AFP) expression enhance the carcinogenicity as revealed in immunohistochemistry (IHC). The enzyme-linked immunosorbent assay (ELISA) concentration of IL-6 was found to be elevated in time dependent manner both in blood serum and liver tissue. Moreover, immunoblot analysis showed increased level of p-STAT3, p-NFκß and IL-6 stimulated the upregulation of mitophagy proteins such as Drp-1, Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Meanwhile, downregulation of Poly [ADP-ribose] polymerase 1 (PARP-1) and cleaved caspase 3 suppresses apoptosis and enhanced expression of AFP supports tumorigenesis. The mRNA level of STAT3 and Drp-1 was also found to be significantly increased. Furthermore, we performed high-field 800 MHz Nuclear Magnetic Resonance (NMR) based tissue and serum metabolomics analysis to identify metabolic signatures associated with the progression of liver cancer. The metabolomics findings revealed aberrant metabolic alterations in liver tissue and serum of 75th and 105th days of intervention groups in comparison to control, 15th and 45th days of intervention groups. Tissue metabolomics analysis revealed the accumulation of succinate in the liver tissue samples, whereas, serum metabolomics analysis revealed significantly decreased circulatory levels of ketone bodies (such as 3-hydroxybutyrate, acetate, acetone, etc.) and membrane metabolites suggesting activated ketolysis in advanced stages of liver cancer. CONCLUSION: STAT3-NFκß signaling axis has a significant role in mitochondrial dysfunction and metabolic alterations in the development of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doenças Mitocondriais , Transdução de Sinais , Animais , alfa-Fetoproteínas/metabolismo , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Interleucina-6/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37140992

RESUMO

Altered mitochondrial function without a well-defined cause has been documented in patients with ulcerative colitis (UC). In our efforts to understand UC pathogenesis, we observed reduced expression of clustered mitochondrial homolog (CLUH) only in the active UC tissues compared with the unaffected areas from the same patient and healthy controls. Stimulation with bacterial Toll-like receptor (TLR) ligands similarly reduced CLUH expression in human primary macrophages. Further, CLUH negatively regulated secretion of proinflammatory cytokines IL-6 and TNF-α and rendered a proinflammatory niche in TLR ligand-stimulated macrophages. CLUH was further found to bind to mitochondrial fission protein dynamin related protein 1 (DRP1) and regulated DRP1 transcription in human macrophages. In the TLR ligand-stimulated macrophages, absence of CLUH led to enhanced DRP1 availability for mitochondrial fission, and a smaller dysfunctional mitochondrial pool was observed. Mechanistically, this fissioned mitochondrial pool in turn enhanced mitochondrial ROS production and reduced mitophagy and lysosomal function in CLUH-knockout macrophages. Remarkably, our studies in the mouse model of colitis with CLUH knockdown displayed exacerbated disease pathology. Taken together, this is the first report to our knowledge explaining the role of CLUH in UC pathogenesis, by means of regulating inflammation via maintaining mitochondrial-lysosomal functions in the human macrophages and intestinal mucosa.


Assuntos
Colite Ulcerativa , Animais , Humanos , Camundongos , Colite Ulcerativa/patologia , Citocinas/metabolismo , Inflamação/complicações , Ligantes , Macrófagos/metabolismo
5.
Mol Cell Endocrinol ; 540: 111525, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34856343

RESUMO

Adiponectin and insulin resistance creates a vicious cycle that exacerbates type 2 diabetes. Earlier, we observed that female leptin receptor-deficient BLKS mice (BKS-db/db) were more sensitive to an adiponectin mimetic GTDF than males, which led us to explore if E2 plays a crucial role in modulation of adiponectin-sensitivity. Male but not female BKS-db/db mice were resistant to metabolic effects of globular adiponectin treatment. Male BKS-db/db displayed reduced skeletal muscle AdipoR1 protein expression, which was consequent to elevated polypyrimidine tract binding protein 1 (PTB) and miR-221. E2 treatment in male BKS-db/db, and ovariectomized BALB/c mice rescued AdipoR1 protein expression via downregulation of PTB and miR-221, and also directly increased AdipoR1 mRNA by its classical nuclear receptors. Estrogen receptor regulation via dietary or pharmacological interventions may improve adiponectin resistance and consequently ameliorate insulin resistance in type 2 diabetes.


Assuntos
Adiponectina/metabolismo , Diabetes Mellitus Experimental , Estradiol/farmacologia , Receptores de Adiponectina/genética , Animais , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Resistência a Medicamentos/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Receptores de Adiponectina/metabolismo , Receptores para Leptina/genética , Caracteres Sexuais
6.
J Leukoc Biol ; 111(3): 611-627, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34288093

RESUMO

Nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 inflammasome and mitophagy play an important role in cytokine release and diabetes progression; however, the role of saturated fatty acid that is induced under such conditions remains little explored. Therefore, the present study evaluates mechanisms regulating mitophagy and inflammasome activation in primary murine diabetic and palmitate-conditioned wild-type (WT) peritoneal macrophages. Peritoneal macrophage, from the diabetic mice and WT mice, challenged with LPS/ATP and palmitate/LPS/ATP, respectively, showed dysfunctional mitochondria as assessed by their membrane potential, mitochondrial reactive oxygen species (mtROS) production, and mitochondrial DNA (mtDNA) release. A defective mitophagy was observed in the diabetic and palmitate-conditioned macrophages stimulated with LPS/ATP as assessed by translocation of PTEN-induced kinase 1 (PINK1)/Parkin or p62 in the mitochondrial fraction. Consequently, increased apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, caspase-1 activation, and IL1ß secretion were observed in LPS/ATP stimulated diabetic and palmitate-conditioned macrophages. LPS/ATP induced Forkhead box O3a (FOXO3a) binding to PINK1 promoter and increased PINK1 mRNA expression in WT macrophages. However, PINK1 mRNA and protein expression were significantly decreased in diabetic and palmitate-conditioned macrophages in response to LPS/ATP. Palmitate-induced acetyl CoA promoted FOXO3a acetylation, which prevented LPS/ATP-induced FOXO3a binding to the PINK1 promoter. C646 (P300 inhibitor) and SRT1720 (SIRT1 activator) prevented FOXO3a acetylation and restored FOXO3a binding to the PINK1 promoter, PINK1 mRNA expression, and mitophagy in palmitate-conditioned macrophages treated with LPS/ATP. Also, a significant decrease in the LPS/ATP-induced mtROS production, mtDNA release, ASC oligomerization, caspase-1 activation, and IL-1ß release was observed in the palmitate-conditioned macrophages. Similarly, modulation of FOXO3a acetylation also prevented LPS/ATP-induced mtDNA release and inflammasome activation in diabetic macrophages. Therefore, FOXO3a acetylation regulates PINK1-dependent mitophagy and inflammasome activation in the palmitate-conditioned and diabetic macrophages.


Assuntos
Diabetes Mellitus Experimental , Proteína Forkhead Box O3/metabolismo , Inflamassomos , Proteínas Quinases/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Caspases/metabolismo , DNA Mitocondrial , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Palmitatos/farmacologia , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Elife ; 102021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33876727

RESUMO

To understand the spread of SARS-CoV2, in August and September 2020, the Council of Scientific and Industrial Research (India) conducted a serosurvey across its constituent laboratories and centers across India. Of 10,427 volunteers, 1058 (10.14%) tested positive for SARS-CoV2 anti-nucleocapsid (anti-NC) antibodies, 95% of which had surrogate neutralization activity. Three-fourth of these recalled no symptoms. Repeat serology tests at 3 (n = 607) and 6 (n = 175) months showed stable anti-NC antibodies but declining neutralization activity. Local seropositivity was higher in densely populated cities and was inversely correlated with a 30-day change in regional test positivity rates (TPRs). Regional seropositivity above 10% was associated with declining TPR. Personal factors associated with higher odds of seropositivity were high-exposure work (odds ratio, 95% confidence interval, p value: 2.23, 1.92-2.59, <0.0001), use of public transport (1.79, 1.43-2.24, <0.0001), not smoking (1.52, 1.16-1.99, 0.0257), non-vegetarian diet (1.67, 1.41-1.99, <0.0001), and B blood group (1.36, 1.15-1.61, 0.001).


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19 , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Humoral , Índia/epidemiologia , Estudos Longitudinais , Masculino , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Estudos Soroepidemiológicos , Fatores de Tempo
8.
Nat Commun ; 8: 15614, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593945

RESUMO

Functional consequences for most inflammatory disease-associated loci are incompletely defined, including in the LACC1 (C13orf31) region. Here we show that human peripheral and intestinal myeloid-derived cells express laccase domain-containing 1 (LACC1); LACC1 is expressed in both the cytoplasm and mitochondria. Upon NOD2 stimulation of human macrophages, LACC1 associates with the NOD2-signalling complex, and is critical for optimal NOD2-induced signalling, mitochondrial ROS (mtROS) production, cytokine secretion and bacterial clearance. LACC1 constitutively associates with succinate dehydrogenase (SDH) subunit A, and amplifies pattern recognition receptor (PRR)-induced SDH activity, an important contributor to mtROS production. Relative to LACC1 Ile254, cells transfected with Crohn's disease-risk LACC1 Val254 or LACC1 with mutations of the nearby histidines (249,250) have reduced PRR-induced outcomes. Relative to LACC1 Ile254 carriers, Val254 disease-risk carrier macrophages demonstrate decreased PRR-induced mtROS, signalling, cytokine secretion and bacterial clearance. Therefore, LACC1 is critical for amplifying PRR-induced outcomes, an effect that is attenuated by the LACC1 disease-risk variant.


Assuntos
Bactérias/imunologia , Imunidade Inata/imunologia , Proteína Adaptadora de Sinalização NOD2/genética , Proteínas/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Células Cultivadas , Doença de Crohn/genética , Citocinas/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/imunologia , NF-kappa B/metabolismo , Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(33): 10461-6, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240347

RESUMO

Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1ß secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines.


Assuntos
Autofagia , Caspase 1/metabolismo , Citocinas/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Transdução de Sinais , Alelos , Ativação Enzimática , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Homeostase , Humanos , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/genética , Leucócitos Mononucleares/citologia , Ligantes , Macrófagos/metabolismo , Monócitos/citologia , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Fatores de Risco , Receptores Toll-Like/metabolismo
10.
J Immunol ; 194(9): 4122-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25801431

RESUMO

The ß2 integrins (CD11/CD18) are heterodimeric leukocyte adhesion molecules expressed on hematopoietic cells. The role of T cell-intrinsic CD18 in trafficking of naive T cells to secondary lymphoid organs and in Ag-dependent T cell activation in vitro and in vivo has been well defined. However, the T cell-extrinsic role for CD18, including on APC, in contributing to T cell activation in vivo is less well understood. We examined the role for T cell-extrinsic CD18 in the activation of wild-type CD4(+) T cells in vivo through the adoptive transfer of DO11.10 Ag-specific CD4(+) T cells into CD18(-/-) mice. We found that T cell-extrinsic CD18 was required for attenuating OVA-induced T cell proliferation in peripheral lymph nodes (PLN). The increased proliferation of wild-type DO11.10 CD4(+) T cells in CD18(-/-) PLN was associated with a higher percentage of APC, and these APC demonstrated an increased activation profile and increased Ag uptake, in particular in F4/80(+) APC. Depletion of F4/80(+) cells both reduced and equalized Ag-dependent T cell proliferation in CD18(-/-) relative to littermate control PLN, demonstrating that these cells play a critical role in the enhanced T cell proliferation in CD18(-/-) mice. Consistently, CD11b blockade, which is expressed on F4/80(+) macrophages, enhanced the proliferation of DO11.10 CD4(+) T cells in CD18(+/-) PLN. Thus, in contrast to the T cell-intrinsic essential role for CD18 in T cell activation, T cell-extrinsic expression of CD18 attenuates Ag-dependent CD4(+) T cell activation in PLN in vivo.


Assuntos
Antígenos CD18/imunologia , Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária/imunologia , Animais , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Knockout
11.
Gastroenterology ; 147(4): 835-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24960189

RESUMO

BACKGROUND & AIMS: Continuous stimulation of pattern recognition receptors (PRRs), including nucleotide-binding oligomerization domain-2 (NOD2) (variants in NOD2 have been associated with Crohn's disease), alters the phenotype of myeloid-derived cells, reducing production of inflammatory cytokines and increasing microbe clearance. We investigated the mechanisms by which microbial clearance increases in macrophages under these conditions. METHODS: Monocytes were purified from human peripheral blood mononuclear cells and differentiated to monocyte-derived macrophages (MDMs). We also isolated human intestinal macrophages. Bacterial clearance by MDMs was assessed in gentamicin protection assays. Effects of intracellular zinc and autophagy were measured by flow cytometry, immunoblot, reverse-transcription polymerase chain reaction, and microscopy experiments. Small interfering RNAs were used to knock down specific proteins in MDMs. NOD2-/- and C57BL/6J mice, maintained in a specific pathogen-free facility, were given antibiotics, muramyl dipeptide (to stimulate NOD2), or dextran sodium sulfate; intestinal lamina propria cells were collected and analyzed. RESULTS: Chronic stimulation of human MDMs through NOD2 up-regulated the expression of multiple genes encoding metallothioneins, which bind and regulate levels of intracellular zinc. Intestinal myeloid-derived cells are stimulated continually through PRRs; metallothionein expression was up-regulated in human and mouse intestinal myeloid-derived cells. Continuous stimulation of NOD2 increased the levels of intracellular zinc, thereby increasing autophagy and bacterial clearance. The metal-regulatory transcription factor-1 (MTF-1) was required for regulation of metallothionein genes in human MDMs. Knockdown of MTF-1 did not affect baseline clearance of bacteria by MDMs. However, the increase in intracellular zinc, autophagy, and bacterial clearance observed with continuous NOD2 stimulation was impaired in MDMs upon MTF-1 knockdown. The addition of zinc or induction of autophagy restored bacterial clearance to MDMs after metallothionein knockdown. NOD2 synergized with the PRRs Toll-like receptors 5 and 9 increase the effects of metallothioneins in MDMs. In mice, the intestinal microbiota contributed to the regulation in expression of metallothioneins, levels of zinc, autophagy, and bacterial clearance by intestinal macrophages. CONCLUSIONS: In studies of human MDMs and in mice, continuous stimulation of PRRs induces expression of metallothioneins. This leads to increased levels of intracellular zinc and enhanced clearance of bacteria via autophagy in macrophages.


Assuntos
Autofagia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Metalotioneína/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Zinco/metabolismo , Animais , Antibacterianos/farmacologia , Autofagia/efeitos dos fármacos , Caspase 1/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/patologia , Metalotioneína/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/genética , Interferência de RNA , Fatores de Tempo , Receptores Toll-Like/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Fator MTF-1 de Transcrição
12.
Immunity ; 40(5): 734-46, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24837102

RESUMO

Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune homeostasis and cytokine secretion. Multiple loci are associated with IBD, but a functional explanation is missing for most. Here we found that pattern-recognition receptor (PRR)-induced cytokine secretion was diminished in human monocyte-derived dendritic cells (MDDC) from rs7282490 ICOSLG GG risk carriers. Homotypic interactions between the costimulatory molecule ICOS and the ICOS ligand on MDDCs amplified nucleotide-binding oligomerization domain 2 (NOD2)-initiated cytokine secretion. This amplification required arginine residues in the ICOSL cytoplasmic tail that recruited the adaptor protein RACK1 and the kinases PKC and JNK leading to PKC, MAPK, and NF-κB activation. MDDC from rs7282490 GG risk-carriers had reduced ICOSL expression and PRR-initiated signaling and this loss-of-function ICOSLG risk allele associated with an ileal Crohn's disease phenotype, similar to polymorphisms in NOD2. Taken together, ICOSL amplifies PRR-initiated outcomes, which might contribute to immune homeostasis.


Assuntos
Doença de Crohn/imunologia , Células Dendríticas/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Células Cultivadas , Doença de Crohn/genética , Ativação Enzimática/imunologia , Proteínas de Ligação ao GTP/imunologia , Células HL-60 , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Macrófagos/imunologia , NF-kappa B/imunologia , Proteínas de Neoplasias/imunologia , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Fosforilação/imunologia , Polimorfismo de Nucleotídeo Único , Proteína Quinase C/imunologia , Interferência de RNA , RNA Interferente Pequeno , Receptores de Quinase C Ativada , Receptores de Superfície Celular/imunologia , Transdução de Sinais/genética
13.
J Immunol ; 192(7): 3409-18, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591373

RESUMO

Polymorphisms in NOD2 confer risk for Crohn's disease, characterized by intestinal inflammation. How NOD2 regulates both inflammatory and regulatory intestinal T cells, which are critical to intestinal immune homeostasis, is not well understood. Anti-CD3 mAb administration is used as therapy in human autoimmune diseases, as well as a model of transient intestinal injury. The stages of T cell activation, intestinal injury, and subsequent T tolerance are dependent on migration of T cells into the small intestinal (SI) lamina propria. Upon anti-CD3 mAb treatment of mice, we found that NOD2 was required for optimal small intestinal IL-10 production, in particular from CD8(+) T cells. This requirement was associated with a critical role for NOD2 in SI CD8(+) T cell accumulation and induction of the CXCR3 ligands CXCL9 and CXCL10, which regulate T cell migration. NOD2 was required in both the hematopoietic and nonhematopoietic compartments for optimal expression of CXCR3 ligands in intestinal tissues. NOD2 synergized with IFN-γ to induce CXCL9 and CXCL10 secretion in dendritic cells, macrophages, and intestinal stromal cells in vitro. Consistent with the in vitro studies, during anti-CD3 mAb treatment in vivo, CXCR3 blockade, CD8(+) T cell depletion, or IFN-γ neutralization each inhibited SI CD8(+) T cell recruitment, and reduced chemokine expression and IL-10 expression. Thus, NOD2 synergizes with IFN-γ to promote CXCL9 and CXCL10 expression, thereby amplifying CXCR3-dependent SI CD8(+) T cell migration during T cell activation, which, in turn, contributes to induction of both inflammatory and regulatory T cell outcomes in the intestinal environment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Intestinos/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Receptores CXCR3/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Complexo CD3/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular/imunologia , Células Cultivadas , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/imunologia , Quimiocina CXCL9/metabolismo , Colite/genética , Colite/imunologia , Colite/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Interferon gama/imunologia , Interferon gama/farmacologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Virulence ; 3(2): 122-35, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22460643

RESUMO

During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the ΔSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The ΔSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the ΔSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the ΔSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.


Assuntos
Proteínas de Bactérias/biossíntese , Ácidos Carboxílicos/metabolismo , Citoplasma/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Estresse Fisiológico , Fatores de Virulência/biossíntese , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Ácidos Carboxílicos/química , Linhagem Celular , Citoplasma/química , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Humanos , Fígado/microbiologia , Linfonodos/microbiologia , Lisossomos/microbiologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Febre Paratifoide/microbiologia , Febre Paratifoide/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Baço/microbiologia , Regulação para Cima , Virulência , Fatores de Virulência/genética
15.
PLoS One ; 6(2): e16667, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21347426

RESUMO

Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+) T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.


Assuntos
Genes Bacterianos/genética , Vacinas contra Salmonella/imunologia , Salmonella enterica/genética , Salmonella enterica/imunologia , Febre Tifoide/prevenção & controle , Administração Oral , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Feminino , Imunidade Humoral/imunologia , Imunoglobulina A/metabolismo , Imunoglobulina G/sangue , Interferon gama/sangue , Interleucina-6/sangue , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Gravidez , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/efeitos adversos , Vacinas contra Salmonella/genética , Salmonella enterica/patogenicidade , Deleção de Sequência , Especificidade da Espécie , Baço/imunologia , Baço/microbiologia , Fatores de Tempo , Febre Tifoide/imunologia
16.
Virulence ; 1(4): 325-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21178464

RESUMO

Intracellular pathogens like Salmonella, Mycobacteria and Listeria has several survival mechanisms to combat the host assault. One of the very interesting strategies observed in case of these intracellular bacteria is their ability to survive and replicate in specialized vacuole inside the infected cells. Salmonella, in its turn, resides in a low pH and nutritionally depleted compartment termed as Salmonella containing vacuole (SCV) which never fuses with the lysosomes. Using macrophage cells we have recently demonstrated a unique characteristic of the SCV. Our data indicates that during Salmonella cell division, the SCV also divides and always a single SCV contains only one bacterium. This actually increases the total SCV number in the Salmonella infected cells. Further, Salmonella infection reduces the lysosome numbers and gives the pathogen an upper hand in the infected cells. Here we will summarize and expand upon our previous findings.


Assuntos
Lisossomos/microbiologia , Lisossomos/fisiologia , Macrófagos/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Vacúolos/microbiologia , Vacúolos/fisiologia , Animais , Divisão Celular , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/ultraestrutura , Camundongos
17.
PLoS One ; 5(12): e15466, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21151933

RESUMO

Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/fisiologia , Arginina/química , Salmonella typhimurium/metabolismo , Animais , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Células Cultivadas , Citosol/metabolismo , Teste de Complementação Genética , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/metabolismo , Nitritos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções por Salmonella/metabolismo , Virulência
18.
Microbiology (Reading) ; 155(Pt 8): 2476-2489, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19520723

RESUMO

Activation of macrophages by interferon gamma (IFN-gamma) and the subsequent production of nitric oxide (NO) are critical for the host defence against Salmonella enterica serovar Typhimurium infection. We report here the inhibition of IFN-gamma-induced NO production in RAW264.7 macrophages infected with wild-type Salmonella. This phenomenon was shown to be dependent on the nirC gene, which encodes a potential nitrite transporter. We observed a higher NO output from IFN-gamma-treated macrophages infected with a nirC mutant of Salmonella. The nirC mutant also showed significantly decreased intracellular proliferation in a NO-dependent manner in activated RAW264.7 macrophages and in liver, spleen and secondary lymph nodes of mice, which was restored by complementing the gene in trans. Under acidified nitrite stress, a twofold more pronounced NO-mediated repression of SPI2 was observed in the nirC knockout strain compared to the wild-type. This enhanced SPI2 repression in the nirC knockout led to a higher level of STAT-1 phosphorylation and inducible nitric oxide synthase (iNOS) expression than seen with the wild-type strain. In iNOS knockout mice, the organ load of the nirC knockout strain was similar to that of the wild-type strain, indicating that the mutant is exclusively sensitive to the host nitrosative stress. Taken together, these results reveal that intracellular Salmonella evade killing in activated macrophages by downregulating IFN-gamma-induced NO production, and they highlight the critical role of nirC as a virulence gene.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Salmonelose Animal/microbiologia , Salmonella/fisiologia , Salmonella/patogenicidade , Animais , Técnicas de Cultura de Células , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Interferon gama/metabolismo , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fosforilação , Fator de Transcrição STAT1/metabolismo , Salmonella/genética , Salmonelose Animal/metabolismo , Virulência
19.
Microbiology (Reading) ; 154(Pt 9): 2837-2846, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18757817

RESUMO

LysR-type transcriptional regulators (LTTRs) are one of the key players that help bacteria adapt to different environments. We have designated STM0952, a putative LTTR in Salmonella enterica serovar Typhimurium (S. Typhimurium), as hydrogen peroxide resistance gene (hrg). A hrg knockout mutant of S. Typhimurium was sensitive to oxidative products of the respiratory burst, specifically to H(2)O(2). The hrg mutant is profoundly attenuated in a murine model of infection and showed decreased intracellular proliferation in macrophages. It also induced increased amounts of reactive oxygen species and co-localization with gp91phox in the macrophage cell line, when compared to the wild-type. A strain overexpressing the hrg gene showed a survival advantage over the wild-type Salmonella under H(2)O(2)-induced stress. Microarray analysis suggested the presence of an Hrg regulon, which is required for resistance to the toxic oxidative products of the reticuloendothelial system.


Assuntos
Proteínas de Bactérias/imunologia , Fagócitos/microbiologia , Explosão Respiratória , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Fatores de Transcrição/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Teste de Complementação Genética , Peróxido de Hidrogênio/imunologia , Peróxido de Hidrogênio/farmacologia , Macrófagos/imunologia , Macrófagos/microbiologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , NADPH Oxidase 2 , NADPH Oxidases/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Fagócitos/imunologia , Fenótipo , Espécies Reativas de Oxigênio/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Virulência/genética , Fatores de Virulência/imunologia
20.
Microbes Infect ; 10(10-11): 1166-74, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18625332

RESUMO

Arginine is a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The competition between iNOS and arginase for arginine contributes to the outcome of several parasitic and bacterial infections. Salmonella infection in macrophage cell line RAW264.7 induces iNOS. Because the availability of l-arginine is a major determinant for nitric oxide (NO) synthesis, we hypothesize that in the Salmonella infected macrophages NO production may be regulated by arginase. Here we report for the first time that Salmonella up-regulates arginase II but not arginase I isoform in RAW264.7 macrophages. Blocking arginase increases the substrate l-arginine availability to iNOS for production of more nitric oxide and perhaps peroxynitrite molecules in the infected cells allowing better killing of virulent Salmonella in a NO dependent manner. RAW264.7 macrophages treated with iNOS inhibitor Aminoguanidine reverts the attenuation in arginase-blocked condition. Further, the NO block created by Salmonella was removed by increasing concentration of l-arginine. The whole-mice system arginase I, although constitutive, is much more abundant than the inducible arginase II isoform. Inhibition of arginase activity in mice during the course of Salmonella infection reduces the bacterial burden and delays the disease outcome in a NO dependent manner.


Assuntos
Arginase/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Óxido Nítrico/metabolismo , Salmonella/metabolismo , Salmonella/patogenicidade , Animais , Arginase/antagonistas & inibidores , Arginina/análogos & derivados , Arginina/farmacologia , Linhagem Celular , Feminino , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Peroxinitroso/metabolismo , Salmonella/efeitos dos fármacos , Espermina/farmacologia , Baço/enzimologia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA