Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339019

RESUMO

The advent of immune checkpoint inhibitors (ICIs) has represented a breakthrough in the treatment of many cancers, although a high number of patients fail to respond to ICIs, which is partially due to the ability of tumor cells to evade immune system surveillance. Non-coding microRNAs (miRNAs) have been shown to modulate the immune evasion of tumor cells, and there is thus growing interest in elucidating whether these miRNAs could be targetable or proposed as novel biomarkers for prognosis and treatment response to ICIs. We therefore performed an extensive literature analysis to evaluate the clinical utility of miRNAs with a confirmed direct relationship with treatment response to ICIs. As a result of this systematic review, we have stratified the miRNA landscape into (i) miRNAs whose levels directly modulate response to ICIs, (ii) miRNAs whose expression is modulated by ICIs, and (iii) miRNAs that directly elicit toxic effects or participate in immune-related adverse events (irAEs) caused by ICIs.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune , Vigilância Imunológica , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Cancers (Basel) ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37760403

RESUMO

Non-small cell lung cancer (NSCLC) is one of the world's leading causes of morbidity and mortality. ICIs alone or combined with chemotherapy have become the standard first-line treatment of metastatic NSCLC. The impressive results obtained have stimulated our interest in applying these therapies in early disease stage treatments, as neoadjuvant immunotherapy has shown promising results. Among many of the factors that may influence responses, the role played by sex is attracting increased interest and needs to be addressed. Here, we aim to first review the state of the art regarding neoadjuvant ICIs, whether they are administered in monotherapy or in combination with chemotherapy at stages IB-IIIA, particularly at stage IIIA, before analyzing whether sex may influence responses. To this end, a meta-analysis of publicly available data comparing male and female major pathological responses (MPR) and pathological complete responses (pCR) was performed. In our meta-analysis, MPR was found to be significantly higher in females than in males, with an odds ratio (OR) of 1.82 (95% CI 1.13-2.93; p = 0.01), while pCR showed a trend to be more favorable in females than in males, but the OR of 1.62 was not statistically significant (95% CI 0.97-2.75; p = 0.08). Overall, our results showed that sex should be systematically considered in future clinical trials settings in order to establish the optimal treatment sequence.

3.
Clin Epigenetics ; 14(1): 116, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123616

RESUMO

Lung cancer patients are diagnosed at late stages when curative treatments are no longer possible; thus, molecular biomarkers for noninvasive detection are urgently needed. In this sense, we previously identified and validated an epigenetic 4-gene signature that yielded a high diagnostic performance in tissue and invasive pulmonary fluids. We analyzed DNA methylation levels using the ultrasensitive digital droplet PCR in noninvasive samples in a cohort of 83 patients. We demonstrated that BCAT1 is the candidate that achieves high diagnostic efficacy in circulating DNA derived from plasma (area under the curve: 0.85). Impact of potentially confounding variables was also explored.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , DNA , Metilação de DNA , Epigênese Genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Transaminases/genética
4.
Int J Cancer ; 150(8): 1255-1268, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843121

RESUMO

Bile acids (BAs) play different roles in cancer development. Some are carcinogenic and BA signaling is also involved in various metabolic, inflammatory and immune-related processes. The liver is the primary site of BA synthesis. Liver dysfunction and microbiome compositional changes, such as during hepatocellular carcinoma (HCC) development, may modulate BA metabolism increasing concentration of carcinogenic BAs. Observations from prospective cohorts are sparse. We conducted a study (233 HCC case-control pairs) nested within a large observational prospective cohort with blood samples taken at recruitment when healthy with follow-up over time for later cancer development. A targeted metabolomics method was used to quantify 17 BAs (primary/secondary/tertiary; conjugated/unconjugated) in prediagnostic plasma. Odd ratios (OR) for HCC risk associations were calculated by multivariable conditional logistic regression models. Positive HCC risk associations were observed for the molar sum of all BAs (ORdoubling  = 2.30, 95% confidence intervals [CI]: 1.76-3.00), and choline- and taurine-conjugated BAs. Relative concentrations of BAs showed positive HCC risk associations for glycoholic acid and most taurine-conjugated BAs. We observe an association between increased HCC risk and higher levels of major circulating BAs, from several years prior to tumor diagnosis and after multivariable adjustment for confounders and liver functionality. Increase in BA concentration is accompanied by a shift in BA profile toward higher proportions of taurine-conjugated BAs, indicating early alterations of BA metabolism with HCC development. Future studies are needed to assess BA profiles for improved stratification of patients at high HCC risk and to determine whether supplementation with certain BAs may ameliorate liver dysfunction.


Assuntos
Ácidos e Sais Biliares/sangue , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/sangue , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Cancers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203535

RESUMO

Metabolic reprogramming is a hallmark of cancer that enables cancer cells to grow, proliferate and survive. This metabolic rewiring is intrinsically regulated by mutations in oncogenes and tumor suppressors, but also extrinsically by tumor microenvironment factors (nutrient and oxygen availability, cell-to-cell interactions, cytokines, hormones, etc.). Intriguingly, only a few cancers are driven by mutations in metabolic genes, which lead metabolites with oncogenic properties (i.e., oncometabolites) to accumulate. In the last decade, there has been rekindled interest in understanding how dysregulated metabolism and its crosstalk with various cell types in the tumor microenvironment not only sustains biosynthesis and energy production for cancer cells, but also contributes to immune escape. An assessment of dysregulated intratumor metabolism has long since been exploited for cancer diagnosis, monitoring and therapy, as exemplified by 18F-2-deoxyglucose positron emission tomography imaging. However, the efficient delivery of precision medicine demands less invasive, cheaper and faster technologies to precisely predict and monitor therapy response. The metabolomic analysis of tumor and/or microenvironment-derived metabolites in readily accessible biological samples is likely to play an important role in this sense. Here, we review altered cancer metabolism and its crosstalk with the tumor microenvironment to focus on energy and biomass sources, oncometabolites and the production of immunosuppressive metabolites. We provide an overview of current pharmacological approaches targeting such dysregulated metabolic landscapes and noninvasive approaches to characterize cancer metabolism for diagnosis, therapy and efficacy assessment.

6.
Transplantation ; 105(10): 2245-2254, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044432

RESUMO

BACKGROUND: N-acetylcysteine infusions have been widely used to reduce ischemia/reperfusion damage to the liver; however, convincing evidence of their benefits is lacking. OBJECTIVE: To perform the largest randomized controlled trial to compare the impact of N-acetylcysteine infusion during liver procurement on liver transplant outcomes. METHODS: Single center, randomized trial with patients recruited from La Fe University Hospital, Spain, from February 2012 to January 2016. A total of 214 grafts were transplanted and randomized to the N-acetylcysteine group (n = 113) or to the standard protocol without N-acetylcysteine (n = 101). The primary endpoint was allograft dysfunction (Olthoff criteria). Secondary outcomes included metabolomic biomarkers of oxidative stress levels, interactions between cold ischemia time and alanine aminotransferase level and graft and patient survival (ID no. NCT01866644). RESULTS: The incidence of primary dysfunction was 34% (31% in the N-acetylcysteine group and 37.4% in the control group [P = 0.38]). N-acetylcysteine administration reduced the alanine aminotransferase level when cold ischemia time was longer than 6 h (P = 0.0125). Oxidative metabolites (glutathione/oxidized glutathione and ophthalmic acid) were similar in both groups (P > 0.05). Graft and patient survival rates at 12 mo and 3 y were similar between groups (P = 0.54 and P = 0.69, respectively). CONCLUSIONS: N-acetylcysteine administration during liver procurement does not improve early allograft dysfunction according to the Olthoff classification. However, when cold ischemia time is longer than 6 h, N-acetylcysteine improves postoperative ALT levels.


Assuntos
Acetilcisteína/administração & dosagem , Antioxidantes/administração & dosagem , Isquemia Fria , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Fígado , Disfunção Primária do Enxerto/prevenção & controle , Coleta de Tecidos e Órgãos , Obtenção de Tecidos e Órgãos , Acetilcisteína/efeitos adversos , Idoso , Alanina Transaminase/sangue , Antioxidantes/efeitos adversos , Biomarcadores/sangue , Isquemia Fria/efeitos adversos , Isquemia Fria/mortalidade , Feminino , Humanos , Infusões Intravenosas , Transplante de Fígado/efeitos adversos , Transplante de Fígado/mortalidade , Masculino , Pessoa de Meia-Idade , Disfunção Primária do Enxerto/diagnóstico , Disfunção Primária do Enxerto/etiologia , Disfunção Primária do Enxerto/mortalidade , Fatores de Risco , Espanha , Fatores de Tempo , Coleta de Tecidos e Órgãos/efeitos adversos , Coleta de Tecidos e Órgãos/mortalidade , Resultado do Tratamento
7.
Methods ; 187: 3-12, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32640317

RESUMO

Methylation of CpG dinucleotides plays a crucial role in the regulation of gene expression and therefore in the development of different pathologies. Aberrant methylation has been associated to the majority of the diseases, including cancer, neurodegenerative, cardiovascular and autoimmune disorders. Analysis of DNA methylation patterns is crucial to understand the underlying molecular mechanism of these diseases. Moreover, DNA methylation patterns could be used as biomarker for clinical management, such as diagnosis, prognosis and treatment response. Nowadays, a variety of high throughput methods for DNA methylation have been developed to analyze the methylation status of a high number of CpGs at once or even the whole genome. However, identification of specific methylation patterns at specific loci is essential for validation and also as a tool for diagnosis. In this review, we describe the most commonly used approaches to evaluate specific DNA methylation. There are three main groups of techniques that allow the identification of specific regions that are differentially methylated: bisulfite conversion-based methods, restriction enzyme-based approaches, and affinity enrichment-based assays. In the first group, specific restriction enzymes recognize and cleave unmethylated DNA, leaving methylated sequences intact. Bisulfite conversion methods are the most popular approach to distinguish methylated and unmethylated DNA. Unmethylated cytosines are deaminated to uracil by sodium bisulfite treatment, while the methyl cytosines remain unconverted. In the last group, proteins with methylation binding domains or antibodies against methyl cytosines are used to recognize methylated DNA. In this review, we provide the theoretical basis and the framework of each technique as well as the analysis of their strength and the weaknesses.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Envelhecimento/genética , Ilhas de CpG/genética , Neoplasias/genética , Obesidade/genética , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos
8.
Cancer Res ; 80(19): 4224-4232, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32747363

RESUMO

Progression on therapy in non-small cell lung carcinoma (NSCLC) is often evaluated radiographically, however, image-based evaluation of said therapies may not distinguish disease progression due to intrinsic tumor drug resistance or inefficient tumor penetration of the drugs. Here we report that the inhibition of mutated EGFR promotes the secretion of a potent vasoconstrictor, endothelin-1 (EDN1), which continues to increase as the cells become resistant with a mesenchymal phenotype. As EDN1 and its receptor (EDNR) is linked to cancer progression, EDNR-antagonists have been evaluated in several clinical trials with disappointing results. These trials were based on a hypothesis that the EDN1-EDNR axis activates the MAPK-ERK signaling pathway that is vital to the cancer cell survival; the trials were not designed to evaluate the impact of tumor-derived EDN1 in modifying tumor microenvironment or contributing to drug resistance. Ectopic overexpression of EDN1 in cells with mutated EGFR resulted in poor drug delivery and retarded growth in vivo but not in vitro. Intratumoral injection of recombinant EDN significantly reduced blood flow and subsequent gefitinib accumulation in xenografted EGFR-mutant tumors. Furthermore, depletion of EDN1 or the use of endothelin receptor inhibitors bosentan and ambrisentan improved drug penetration into tumors and restored blood flow in tumor-associated vasculature. Correlatively, these results describe a simplistic endogenous yet previously unrealized resistance mechanism inherent to a subset of EGFR-mutant NSCLC to attenuate tyrosine kinase inhibitor delivery to the tumors by limiting drug-carrying blood flow and the drug concentration in tumors. SIGNIFICANCE: EDNR antagonists can be repurposed to improve drug delivery in VEGFA-secreting tumors, which normally respond to TKI treatment by secreting EDN1, promoting vasoconstriction, and limiting blood and drug delivery.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Endotelina-1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endotelina-1/genética , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacocinética , Humanos , Neoplasias Pulmonares/genética , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Chem Biol ; 16(7): 731-739, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32393898

RESUMO

Glucose is catabolized by two fundamental pathways, glycolysis to make ATP and the oxidative pentose phosphate pathway to make reduced nicotinamide adenine dinucleotide phosphate (NADPH). The first step of the oxidative pentose phosphate pathway is catalyzed by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Here we develop metabolite reporter and deuterium tracer assays to monitor cellular G6PD activity. Using these, we show that the most widely cited G6PD antagonist, dehydroepiandosterone, does not robustly inhibit G6PD in cells. We then identify a small molecule (G6PDi-1) that more effectively inhibits G6PD. Across a range of cultured cells, G6PDi-1 depletes NADPH most strongly in lymphocytes. In T cells but not macrophages, G6PDi-1 markedly decreases inflammatory cytokine production. In neutrophils, it suppresses respiratory burst. Thus, we provide a cell-active small molecule tool for oxidative pentose phosphate pathway inhibition, and use it to identify G6PD as a pharmacological target for modulating immune response.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Animais , Linhagem Celular , Desidroepiandrosterona/farmacologia , Relação Dose-Resposta a Droga , Ensaios Enzimáticos , Glucose/metabolismo , Glucosefosfato Desidrogenase/imunologia , Glucosefosfato Desidrogenase/metabolismo , Glicólise/imunologia , Células HCT116 , Células Hep G2 , Humanos , Imunidade Inata , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/enzimologia , Linfócitos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/enzimologia , Macrófagos/imunologia , NADP/antagonistas & inibidores , NADP/metabolismo , Neutrófilos/citologia , Neutrófilos/enzimologia , Neutrófilos/imunologia , Via de Pentose Fosfato/imunologia
10.
J Natl Cancer Inst ; 112(5): 516-524, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31435679

RESUMO

BACKGROUND: Bile acids have been proposed to promote colon carcinogenesis. However, there are limited prospective data on circulating bile acid levels and colon cancer risk in humans. METHODS: Associations between prediagnostic plasma levels of 17 primary, secondary, and tertiary bile acid metabolites (conjugated and unconjugated) and colon cancer risk were evaluated in a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Bile acid levels were quantified by tandem mass spectrometry in samples from 569 incident colon cancer cases and 569 matched controls. Multivariable logistic regression analyses were used to estimate odds ratios (ORs) for colon cancer risk across quartiles of bile acid concentrations. RESULTS: Positive associations were observed between colon cancer risk and plasma levels of seven conjugated bile acid metabolites: the primary bile acids glycocholic acid (ORquartile 4 vs quartile 1= 2.22, 95% confidence interval [CI] = 1.52 to 3.26), taurocholic acid (OR = 1.78, 95% CI = 1.23 to 2.58), glycochenodeoxycholic acid (OR = 1.68, 95% CI = 1.13 to 2.48), taurochenodeoxycholic acid (OR = 1.62, 95% CI = 1.11 to 2.36), and glycohyocholic acid (OR = 1.65, 95% CI = 1.13 to 2.40), and the secondary bile acids glycodeoxycholic acid (OR = 1.68, 95% CI = 1.12 to 2.54) and taurodeoxycholic acid (OR = 1.54, 95% CI = 1.02 to 2.31). By contrast, unconjugated bile acids and tertiary bile acids were not associated with risk. CONCLUSIONS: This prospective study showed that prediagnostic levels of certain conjugated primary and secondary bile acids were positively associated with risk of colon cancer. Our findings support experimental data to suggest that a high bile acid load is colon cancer promotive.


Assuntos
Ácidos e Sais Biliares/sangue , Neoplasias do Colo/sangue , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Risco , Espanha/epidemiologia
11.
Sci Rep ; 9(1): 15400, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659178

RESUMO

Finding novel targets in non-small cell lung cancer (NSCLC) is highly needed and identification of synthetic lethality between two genes is a new approach to target NSCLC. We previously found that TMPRSS4 promotes NSCLC growth and constitutes a prognostic biomarker. Here, through large-scale analyses across 5 public databases we identified consistent co-expression between TMPRSS4 and DDR1. Similar to TMPRSS4, DDR1 promoter was hypomethylated in NSCLC in 3 independent cohorts and hypomethylation was an independent prognostic factor of disease-free survival. Treatment with 5-azacitidine increased DDR1 levels in cell lines, suggesting an epigenetic regulation. Cells lacking TMPRSS4 were highly sensitive to the cytotoxic effect of the DDR1 inhibitor dasatinib. TMPRSS4/DDR1 double knock-down (KD) cells, but not single KD cells suffered a G0/G1 cell cycle arrest with loss of E2F1 and cyclins A and B, increased p21 levels and a larger number of cells in apoptosis. Moreover, double KD cells were highly sensitized to cisplatin, which caused massive apoptosis (~40%). In vivo studies demonstrated tumor regression in double KD-injected mice. In conclusion, we have identified a novel vulnerability in NSCLC resulting from a synthetic lethal interaction between DDR1 and TMPRSS4.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Receptor com Domínio Discoidina 1/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Serina Endopeptidases/genética , Mutações Sintéticas Letais , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/toxicidade , Metilação de DNA , Dasatinibe/toxicidade , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Regiões Promotoras Genéticas
12.
Cancer Res ; 79(17): 4439-4452, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31273063

RESUMO

Although EGFR mutant-selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK-ERK pathway via ß-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI-resistant persister cells. Many patients with non-small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutation, who progressed on EGFR inhibitors, demonstrated increased CXCR7 expression. These data suggest that CXCR7 inhibition could considerably delay and prevent the emergence of acquired EGFR TKI resistance in EGFR-mutant NSCLC. SIGNIFICANCE: Increased expression of the chemokine receptor CXCR7 constitutes a mechanism of resistance to EGFR TKI in patients with non-small cell lung cancer through reactivation of ERK signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores CXCR/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Receptores CXCR/genética , beta-Arrestinas/metabolismo
13.
J Thorac Dis ; 10(3): 1386-1393, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29707288

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are the standard treatment of advanced, EGFR-mutant non-small-cell lung cancer (NSCLC). Usually, radiographic assessment of response to chemotherapy is performed after the patient completes the second course of treatment. The optimal timing of response evaluation for patients receiving EGFR-TKIs is, however, not well-defined. The purpose of this study is to evaluate the association of an early radiological response (ERR) to TKIs by computed tomography (CT) with progression-free survival (PFS) and overall survival (OS) in advanced NSCLC patients with EGFR mutations. METHODS: EGFR mutation status was analyzed retrospectively in a cohort of 360 NSCLC patients' between January 2009 and November 2014. Forty of them received treatment with TKI and therefore were included in the study. Response to TKI therapy was defined according to Response Evaluation Criteria in Solid Tumors (RECIST) v1.1. ERR was defined as complete response (CR) or partial response (PR) at the first radiographic evaluation performed within 6-8 weeks after the beginning of the treatment. RESULTS: Activating mutations in the tyrosine kinase domain of the EGFR gene were mainly exon 19 deletions. Thirty patients (75%) had ERR, 4 of those patients (10%) showed a PR on early CT achieving a CR in the long-term monitoring. Median PFS was longer in patients experiencing an ERR (10.9 vs. 2.4 months; HR: 0.42; 95% CI: 0.19-0.93; P=0.033) than those that did not [stable disease (SD) or progressive disease (PD)]. Median overall survival OS was also significantly increased in patients experiencing ERR (23.2 vs. 11.9 months; HR: 0.3; 95% CI: 0.15-0.85; P=0.021). CONCLUSIONS: ERR in patients treated with EGFR TKI therapy is associated with statistically significant PFS and OS, and could be a surrogate marker of efficacy in these patients. Moreover, ERR provides an early identification of patients not benefitting from TKI, despite the presence of activating EGFR mutations in which further efforts are needed to improve their prognosis.

14.
Electrophoresis ; 38(18): 2331-2340, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28512733

RESUMO

Phospholipidosis and steatosis are two toxic effects, which course with overaccumulation of different classes of lipids in the liver. MS-based lipidomics has become a powerful tool for the comprehensive determination of lipids. LC-MS lipid profiling of HepG2 cells is proposed as an in vitro assay to study and anticipate phospholipidosis and steatosis. Cells with and without preincubation with a mixture of free fatty acids (FFA; i.e. oleic and palmitic) were exposed to a set of well-known steatogenic and phospholipidogenic compounds. The use of FFA preloading accelerated the accumulation of phospholipids, thus leading to a better discrimination of phospholipidosis, and magnified the lipidomic alterations induced by steatogenic drugs. Phospholipidosis was characterized by increased levels of phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines, and phosphatidylinositols, while steatosis induced alterations in FA oxidation and triacylglyceride (TG) synthesis pathways (with changes in the levels of FFA, acylcarnitines, monoacylglycerides, diacylglycerides, and TG). Interestingly, palmitic and oleic acids incorporation into lipids differed. A characteristic pattern was observed in the fold of change of particular TG species in the case of steatosis (TG(54:3) > TG(52:2) > TG(50:1) > TG(48:0)). Based on the levels of those lipids containing only palmitic and/or oleic acid moieties a partial least squares-discriminant analysis model was built, which showed good discrimination among nontoxic, phospholipidogenic and steatogenic compounds. In conclusion, it has been shown that the use of FFA preincubation together with intracellular LC-MS based lipid profiling could be a useful approach to identify the potential of drug candidates to induce phospholipidosis and/or steatosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado Gorduroso/metabolismo , Lipidoses/metabolismo , Fosfolipídeos/análise , Cromatografia Líquida , Biologia Computacional , Células Hep G2 , Humanos , Análise dos Mínimos Quadrados , Espectrometria de Massas , Modelos Biológicos , Fosfolipídeos/metabolismo
15.
Arch Toxicol ; 91(5): 2093-2105, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27738743

RESUMO

Differentiated human bronchial epithelial cells in air liquid interface cultures (ALI-PBEC) represent a promising alternative for inhalation studies with rodents as these 3D airway epithelial tissue cultures recapitulate the human airway in multiple aspects, including morphology, cell type composition, gene expression and xenobiotic metabolism. We performed a detailed longitudinal gene expression analysis during the differentiation of submerged primary human bronchial epithelial cells into ALI-PBEC to assess the reproducibility and inter-individual variability of changes in transcriptional activity during this process. We generated ALI-PBEC cultures from four donors and focussed our analysis on the expression levels of 362 genes involved in biotransformation, which are of primary importance for toxicological studies. Expression of various of these genes (e.g., GSTA1, ADH1C, ALDH1A1, CYP2B6, CYP2F1, CYP4B1, CYP4X1 and CYP4Z1) was elevated following the mucociliary differentiation of airway epithelial cells into a pseudo-stratified epithelial layer. Although a substantial number of genes were differentially expressed between donors, the differences in fold changes were generally small. Metabolic activity measurements applying a variety of different cytochrome p450 substrates indicated that epithelial cultures at the early stages of differentiation are incapable of biotransformation. In contrast, mature ALI-PBEC cultures were proficient in the metabolic conversion of a variety of substrates albeit with considerable variation between donors. In summary, our data indicate a distinct increase in biotransformation capacity during differentiation of PBECs at the air-liquid interface and that the generation of biotransformation competent ALI-PBEC cultures is a reproducible process with little variability between cultures derived from four different donors.


Assuntos
Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Xenobióticos/farmacocinética , Benzo(a)Antracenos/farmacocinética , Benzo(a)pireno/farmacocinética , Biotransformação/genética , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Citocromos/genética , Citocromos/metabolismo , Enzimas/genética , Células Epiteliais/metabolismo , Humanos , Dibenzodioxinas Policloradas/farmacocinética , Reprodutibilidade dos Testes , Xenobióticos/metabolismo
16.
Sci Rep ; 6: 27239, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27265840

RESUMO

In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity is an important issue for both saving resources and preventing public health risks. Current in vitro cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic information. This study aimed to develop a metabolomic mass spectrometry-based approach for the detection and classification of drug-induced hepatotoxicity. To this end, the metabolite profiles of human derived hepatic cells (i.e., HepG2) exposed to different well-known hepatotoxic compounds acting through different mechanisms (i.e., oxidative stress, steatosis, phospholipidosis, and controls) were compared by multivariate data analysis, thus allowing us to decipher both common and mechanism-specific altered biochemical pathways. Briefly, oxidative stress damage markers were found in the three mechanisms, mainly showing altered levels of metabolites associated with glutathione and γ-glutamyl cycle. Phospholipidosis was characterized by a decreased lysophospholipids to phospholipids ratio, suggestive of phospholipid degradation inhibition. Whereas, steatosis led to impaired fatty acids ß-oxidation and a subsequent increase in triacylglycerides synthesis. The characteristic metabolomic profiles were used to develop a predictive model aimed not only to discriminate between non-toxic and hepatotoxic drugs, but also to propose potential drug toxicity mechanism(s).


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado Gorduroso/metabolismo , Metabolômica/métodos , Estresse Oxidativo , Fígado Gorduroso/induzido quimicamente , Glutationa/metabolismo , Células Hep G2 , Humanos , Espectrometria de Massas , Modelos Biológicos , Fosfolipídeos/química
17.
Anal Bioanal Chem ; 408(4): 1217-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26769129

RESUMO

MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids.


Assuntos
Cromatografia Líquida/métodos , Fígado/metabolismo , Metaboloma , Metabolômica/métodos , Animais , Adesão Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Técnicas Citológicas , Células Hep G2/química , Células Hep G2/metabolismo , Humanos , Extração Líquido-Líquido/métodos , Fígado/citologia , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos , Fluxo de Trabalho
18.
Liver Transpl ; 21(1): 38-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25204890

RESUMO

Early allograft dysfunction (EAD) dramatically influences graft and patient outcomes. A lack of consensus on an EAD definition hinders comparisons of liver transplant outcomes and management of recipients among and within centers. We sought to develop a model for the quantitative assessment of early allograft function [Model for Early Allograft Function Scoring (MEAF)] after transplantation. A retrospective study including 1026 consecutive liver transplants was performed for MEAF score development. Multivariate data analysis was used to select a small number of postoperative variables that adequately describe EAD. Then, the distribution of these variables was mathematically modeled to assign a score for each actual variable value. A model, based on easily obtainable clinical parameters (ie, alanine aminotransferase, international normalized ratio, and bilirubin) and scoring liver function from 0 to 10, was built. The MEAF score showed a significant association with patient and graft survival at 3-, 6- and 12-month follow-ups. Hepatic steatosis and age for donors; cold/warm ischemia times and postreperfusion syndrome for surgery; and intensive care unit and hospital stays, Model for End-Stage Liver Disease and Child-Pugh scores, body mass index, and fresh frozen plasma transfusions for recipients were factors associated significantly with EAD. The model was satisfactorily validated by its application to an independent set of 200 patients who underwent liver transplantation at a different center. In conclusion, a model for the quantitative assessment of EAD severity has been developed and validated for the first time. The MEAF provides a more accurate graft function assessment than current categorical classifications and may help clinicians to make early enough decisions on retransplantation benefits. Furthermore, the MEAF score is a predictor of recipient and graft survival. The standardization of the criteria used to define EAD may allow reliable comparisons of recipients' treatments and transplant outcomes among and within centers.


Assuntos
Técnicas de Apoio para a Decisão , Transplante de Fígado/efeitos adversos , Modelos Biológicos , Disfunção Primária do Enxerto/diagnóstico , Alanina Transaminase/sangue , Teorema de Bayes , Bilirrubina/sangue , Biomarcadores/sangue , Coagulação Sanguínea , Ensaios Enzimáticos Clínicos , Sobrevivência de Enxerto , Humanos , Coeficiente Internacional Normatizado , Transplante de Fígado/mortalidade , Análise Multivariada , Dinâmica não Linear , Valor Preditivo dos Testes , Disfunção Primária do Enxerto/sangue , Disfunção Primária do Enxerto/etiologia , Disfunção Primária do Enxerto/mortalidade , Análise de Componente Principal , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
19.
Lab Invest ; 95(2): 223-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25531568

RESUMO

Glycine-N-methyltransferase (GNMT) is essential to preserve liver homeostasis. Cirrhotic patients show low expression of GNMT that is absent in hepatocellular carcinoma (HCC) samples. Accordingly, GNMT deficiency in mice leads to steatohepatitis, fibrosis, cirrhosis, and HCC. Lack of GNMT triggers NK cell activation in GNMT(-/-) mice and depletion of TRAIL significantly attenuates acute liver injury and inflammation in these animals. Chronic inflammation leads to fibrogenesis, further contributing to the progression of chronic liver injury regardless of the etiology. The aim of our study is to elucidate the implication of TRAIL-producing NK cells in the progression of chronic liver injury and fibrogenesis. For this we generated double TRAIL(-/-)/GNMT(-/-) mice in which we found that TRAIL deficiency efficiently protected the liver against chronic liver injury and fibrogenesis in the context of GNMT deficiency. Next, to better delineate the implication of TRAIL-producing NK cells during fibrogenesis we performed bile duct ligation (BDL) to GNMT(-/-) and TRAIL(-/-)/GNMT(-/-) mice. In GNMT(-/-) mice, exacerbated fibrogenic response after BDL concurred with NK1.1(+) cell activation. Importantly, specific inhibition of TRAIL-producing NK cells efficiently protected GNMT(-/-) mice from BDL-induced liver injury and fibrogenesis. Finally, TRAIL(-/-)/GNMT(-/-) mice showed significantly less fibrosis after BDL than GNMT(-/-) mice further underlining the relevance of the TRAIL/DR5 axis in mediating liver injury and fibrogenesis in GNMT(-/-) mice. Finally, in vivo silencing of DR5 efficiently protected GNMT(-/-) mice from BDL-liver injury and fibrogenesis, overall underscoring the key role of the TRAIL/DR5 axis in promoting fibrogenesis in the context of absence of GNMT. Overall, our work demonstrates that TRAIL-producing NK cells actively contribute to liver injury and further fibrogenesis in the pathological context of GNMT deficiency, a molecular scenario characteristic of chronic human liver disease.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/imunologia , Doença Hepática Terminal/etiologia , Doença Hepática Terminal/patologia , Glicina N-Metiltransferase/deficiência , Células Matadoras Naturais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Ductos Biliares/cirurgia , Western Blotting , Citometria de Fluxo , Glicina N-Metiltransferase/imunologia , Humanos , Imuno-Histoquímica , Ligadura , Camundongos , Camundongos Knockout , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
20.
Toxicology ; 323: 61-9, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-24949552

RESUMO

Large differences in toxicity responses occur within the human population. In this study we evaluate whether interindividual variation in baseline enzyme activity (EA)/gene expression (GE) levels in liver predispose for the variation in toxicity responses by assessing dose-response relationships for several prototypical hepatotoxicants. Baseline levels of cytochrome-P450 (CYP) GE/EA were measured in precision-cut human liver slices. Slices (n=4-5/compound) were exposed to a dose-range of acetaminophen, aflatoxin B1, benzo(α) pyrene or 2-nitrofluorene. Interindividual variation in induced genotoxicity (COMET-assay and CDKN1A/p21 GE) and cytotoxicity (lactate dehydrogenase-leakage), combined with NQO1- and GSTM1-induced GE-responses for oxidative stress and GE-responses of several CYPs was evaluated. The benchmark dose-approach was applied as a tool to model exposure responses on an individual level. Variation in baseline CYP levels, both GE and EA, can explain variation in compound exposure-responses on an individual level. Network analyses enable the definition of key parameters influencing interindividual variation after compound exposure. For 2-nitrofluorene, this analysis suggests involvement of CYP1B1 in the metabolism of this compound, which represents a novel finding. In this study, GSTM1 which is known to be highly polymorphic within the human population, but so far could not be linked to toxicity in acetaminophen-poisoned patients, is suggested to cause interindividual variability in acetaminophen-metabolism, dependent on the individual's gene expression-responses of CYP-enzymes. This study demonstrates that using interindividual variation within network modelling provides a source for the definition of essential and even new parameters involved in compound-related metabolism. This information might enable ways to make more quantitative estimates of human risks.


Assuntos
Fígado/efeitos dos fármacos , Xenobióticos/toxicidade , Acetaminofen/toxicidade , Aflatoxina B1/toxicidade , Benzo(a)pireno/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Sistema Enzimático do Citocromo P-450/genética , Dano ao DNA , Fluorenos/toxicidade , Expressão Gênica , Glutationa Transferase/genética , Humanos , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA