Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(14): e34523, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114046

RESUMO

The significance of USP11 as a critical regulator in cancer has garnered substantial attention, primarily due to its catalytic activity as a deubiquitinating enzyme. Nonetheless, a thorough evaluation of USP11 across various cancer types in pan-cancer studies remains absent. Our analysis integrates data from a variety of sources, including five immunotherapy cohorts, thirty-three cohorts from The Cancer Genome Atlas (TCGA), and sixteen cohorts from the Gene Expression Omnibus (GEO), two of which involve single-cell transcriptomic data. Our findings indicate that aberrant USP11 expression is predictive of survival outcomes across various cancer types. The highest frequency of genomic alterations was observed in uterine corpus endometrial carcinoma (UCEC), with single-cell transcriptome analysis revealing significantly higher USP11 expression in plasmacytoid dendritic cells and mast cells. Notably, USP11 expression was associated with the infiltration levels of CD8+ T cells and natural killer (NK) activated cells. Additionally, in the skin cutaneous melanoma (SKCM) phs000452 cohort, patients with higher USP11 mRNA levels during immunotherapy experienced a significantly shorter median progression-free survival. USP11 emerges as a promising molecular biomarker with significant potential for predicting patient prognosis and immunoreactivity across various cancer types.

2.
Lancet Digit Health ; 6(7): e458-e469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849291

RESUMO

BACKGROUND: Accurately distinguishing between malignant and benign thyroid nodules through fine-needle aspiration cytopathology is crucial for appropriate therapeutic intervention. However, cytopathologic diagnosis is time consuming and hindered by the shortage of experienced cytopathologists. Reliable assistive tools could improve cytopathologic diagnosis efficiency and accuracy. We aimed to develop and test an artificial intelligence (AI)-assistive system for thyroid cytopathologic diagnosis according to the Thyroid Bethesda Reporting System. METHODS: 11 254 whole-slide images (WSIs) from 4037 patients were used to train deep learning models. Among the selected WSIs, cell level was manually annotated by cytopathologists according to The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC) guidelines of the second edition (2017 version). A retrospective dataset of 5638 WSIs of 2914 patients from four medical centres was used for validation. 469 patients were recruited for the prospective study of the performance of AI models and their 537 thyroid nodule samples were used. Cohorts for training and validation were enrolled between Jan 1, 2016, and Aug 1, 2022, and the prospective dataset was recruited between Aug 1, 2022, and Jan 1, 2023. The performance of our AI models was estimated as the area under the receiver operating characteristic (AUROC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. The primary outcomes were the prediction sensitivity and specificity of the model to assist cyto-diagnosis of thyroid nodules. FINDINGS: The AUROC of TBSRTC III+ (which distinguishes benign from TBSRTC classes III, IV, V, and VI) was 0·930 (95% CI 0·921-0·939) for Sun Yat-sen Memorial Hospital of Sun Yat-sen University (SYSMH) internal validation and 0·944 (0·929 - 0·959), 0·939 (0·924-0·955), 0·971 (0·938-1·000) for The First People's Hospital of Foshan (FPHF), Sichuan Cancer Hospital & Institute (SCHI), and The Third Affiliated Hospital of Guangzhou Medical University (TAHGMU) medical centres, respectively. The AUROC of TBSRTC V+ (which distinguishes benign from TBSRTC classes V and VI) was 0·990 (95% CI 0·986-0·995) for SYSMH internal validation and 0·988 (0·980-0·995), 0·965 (0·953-0·977), and 0·991 (0·972-1·000) for FPHF, SCHI, and TAHGMU medical centres, respectively. For the prospective study at SYSMH, the AUROC of TBSRTC III+ and TBSRTC V+ was 0·977 and 0·981, respectively. With the assistance of AI, the specificity of junior cytopathologists was boosted from 0·887 (95% CI 0·8440-0·922) to 0·993 (0·974-0·999) and the accuracy was improved from 0·877 (0·846-0·904) to 0·948 (0·926-0·965). 186 atypia of undetermined significance samples from 186 patients with BRAF mutation information were collected; 43 of them harbour the BRAFV600E mutation. 91% (39/43) of BRAFV600E-positive atypia of undetermined significance samples were identified as malignant by the AI models. INTERPRETATION: In this study, we developed an AI-assisted model named the Thyroid Patch-Oriented WSI Ensemble Recognition (ThyroPower) system, which facilitates rapid and robust cyto-diagnosis of thyroid nodules, potentially enhancing the diagnostic capabilities of cytopathologists. Moreover, it serves as a potential solution to mitigate the scarcity of cytopathologists. FUNDING: Guangdong Science and Technology Department. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Aprendizado Profundo , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/patologia , China , Estudos Retrospectivos , Biópsia por Agulha Fina , Estudos Prospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Sensibilidade e Especificidade , Glândula Tireoide/patologia , Idoso , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA