Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflamm Res ; 73(8): 1393-1409, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896289

RESUMO

BACKGROUND: Tumor microenvironment (TME) heterogeneity is an important factor affecting the treatment response of immune checkpoint inhibitors (ICI). However, the TME heterogeneity of melanoma is still widely characterized. METHODS: We downloaded the single-cell sequencing data sets of two melanoma patients from the GEO database, and used the "Scissor" algorithm and the "BayesPrism" algorithm to comprehensively analyze the characteristics of microenvironment cells based on single-cell and bulk RNA-seq data. The prediction model of immunotherapy response was constructed by machine learning and verified in three cohorts of GEO database. RESULTS: We identified seven cell types. In the Scissor+ subtype cell population, the top three were T cells, B cells and melanoma cells. In the Scissor- subtype, there are more macrophages. By quantifying the characteristics of TME, significant differences in B cells between responders and non-responders were observed. The higher the proportion of B cells, the better the prognosis. At the same time, macrophages in the non-responsive group increased significantly. Finally, nine gene features for predicting ICI response were constructed, and their predictive performance was superior in three external validation groups. CONCLUSION: Our study revealed the heterogeneity of melanoma TME and found a new predictive biomarker, which provided theoretical support and new insights for precise immunotherapy of melanoma patients.


Assuntos
Imunoterapia , Melanoma , Análise de Sequência de RNA , Análise de Célula Única , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Melanoma/genética , Melanoma/terapia , Melanoma/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Aprendizado de Máquina , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Prognóstico , Linfócitos B/imunologia
3.
Heliyon ; 10(3): e25570, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352751

RESUMO

The recurrence or resistance to treatment of primary liver cancer (PLL) is significantly related to the heterogeneity present within the tumor. In this study, we integrated prognosis risk score, mRNAsi index, and immune characteristics clustering to classify patients. The four subtypes obtained from the combined classification are associated with PLC's prognosis and drug response. In these subtypes, we observed mRNAsiH_ICCA subtype, the intersection between high mRNAsi and immune characteristics clustering A, had the worst prognosis. Specifically, immune characteristics clustering B (ICC_B) had high drug sensitivity in most drugs regardless of the value of mRNAsi. On the other hand, patients with low mRNAsi responded better to ten drugs including KU-55933 and NU7441, while patients with high mRNAsi might benefit from drugs like Leflunomide. By matching the specific characteristics of each combined subtype with the drug-induced cell line expression profile, we identified a group of potential therapeutic drugs that might regulate the expression of disease signature genes. We developed a feasible multiple combined typing strategy, hoping to guide therapeutic selection and promote the development of precision medicine.

4.
J Cancer Res Clin Oncol ; 150(2): 37, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279056

RESUMO

BACKGROUND: Recent research reported that mononuclear phagocyte system (MPS) can contribute to immune defense but the classification of head and neck squamous cell carcinoma (HNSCC) patients based on MPS-related multi-omics features using machine learning lacked. METHODS: In this study, we obtain marker genes for MPS through differential analysis at the single-cell level and utilize "similarity network fusion" and "MoCluster" algorithms to cluster patients' multi-omics features. Subsequently, based on the corresponding clinical information, we investigate the prognosis, drugs, immunotherapy, and biological differences between the subtypes. A total of 848 patients have been included in this study, and the results obtained from the training set can be verified by two independent validation sets using "the nearest template prediction". RESULTS: We identified two subtypes of HNSCC based on MPS-related multi-omics features, with CS2 exhibiting better predictive prognosis and drug response. CS2 represented better xenobiotic metabolism and higher levels of T and B cell infiltration, while the biological functions of CS1 were mainly enriched in coagulation function, extracellular matrix, and the JAK-STAT signaling pathway. Furthermore, we established a novel and stable classifier called "getMPsub" to classify HNSCC patients, demonstrating good consistency in the same training set. External validation sets classified by "getMPsub" also illustrated similar differences between the two subtypes. CONCLUSIONS: Our study identified two HNSCC subtypes by machine learning and explored their biological difference. Notably, we constructed a robust classifier that presented an excellent classifying prediction, providing new insight into the precision medicine of HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Multiômica , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Sistema Fagocitário Mononuclear , Imunoterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Prognóstico , Microambiente Tumoral
5.
Mol Biotechnol ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261152

RESUMO

Recent researches reported that neurotrophins can promote glioma growth/invasion but the relevant model for predicting patients' survival in Lower-Grade Gliomas (LGGs) lacked. In this study, we adopted univariate Cox analysis, LASSO regression, and multivariate Cox analysis to determine a signature including five neurotrophin-related genes (NTGs), CLIC1, SULF2, TGIF1, TTF2, and WEE1. Two-sample Mendelian Randomization (MR) further explored whether these prognostic-related genes were genetic variants that increase the risk of glioma. A total of 1306 patients have been included in this study, and the results obtained from the training set can be verified by four independent validation sets. The low-risk subgroup had longer overall survival in five datasets, and its AUC values all reached above 0.7. The risk groups divided by the NTGs signature exhibited a distinct difference in targeted therapies from the copy-number variation, somatic mutation, LGG's surrounding microenvironment, and drug response. MR corroborated that TGIF1 was a potential causal target for increasing the risk of glioma. Our study identified a five-NTGs signature that presented an excellent survival prediction and potential biological function, providing new insight for the selection of LGGs therapy.

6.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895143

RESUMO

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Increasing evidence highlights the significant role of immune-related genes (IRGs) in ACC progression and immunotherapy, but the research is still limited. Based on the Cancer Genome Atlas (TCGA) database, immune-related molecular subtypes were identified by unsupervised consensus clustering. Univariate Cox analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression were employed to further establish immune-related gene signatures (IRGS). An evaluation of immune cell infiltration, biological function, tumor mutation burden (TMB), predicted immunotherapy response, and drug sensitivity in ACC patients was conducted to elucidate the applicative efficacy of IRGS in precision therapy. ACC patients were divided into two molecular subtypes through consistent clustering. Furthermore, the 3-gene signature (including PRKCA, LTBP1, and BIRC5) based on two molecular subtypes demonstrated consistent prognostic efficacy across the TCGA and GEO datasets and emerged as an independent prognostic factor. The low-risk group exhibited heightened immune cell infiltration, TMB, and immune checkpoint inhibitors (ICIs), associated with a favorable prognosis. Pathways associated with drug metabolism, hormone regulation, and metabolism were activated in the low-risk group. In conclusion, our findings suggest IRGS can be used as an independent prognostic biomarker, providing a foundation for shaping future ACC immunotherapy strategies.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/terapia , Prognóstico , Análise por Conglomerados , Bases de Dados Factuais , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/terapia , Microambiente Tumoral
7.
Cells ; 12(5)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36899891

RESUMO

Increasing evidence confirms that tumor microenvironment (TME) can influence tumor progression and treatment, but TME is still understudied in adrenocortical carcinoma (ACC). In this study, we first scored TME using the xCell algorithm, then defined genes associated with TME, and then used consensus unsupervised clustering analysis to construct TME-related subtypes. Meanwhile, weighted gene co-expression network analysis was used to identify modules correlated with TME-related subtypes. Ultimately, the LASSO-Cox approach was used to establish a TME-related signature. The results showed that TME-related scores in ACC may not correlate with clinical features but do promote a better overall survival. Patients were classified into two TME-related subtypes. Subtype 2 had more immune signaling features, higher expression of immune checkpoints and MHC molecules, no CTNNB1 mutations, higher infiltration of macrophages and endothelial cells, lower tumor immune dysfunction and exclusion scores, and higher immunophenoscore, suggesting that subtype 2 may be more sensitive to immunotherapy. 231 modular genes highly relevant to TME-related subtypes were identified, and a 7-gene TME-related signature that independently predicted patient prognosis was established. Our study revealed an integrated role of TME in ACC and helped to identify those patients who really responded to immunotherapy, while providing new strategies on risk management and prognosis prediction.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Células Endoteliais , Microambiente Tumoral , Imunoterapia
8.
Front Immunol ; 14: 1090040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825022

RESUMO

Background: Glioblastoma multiforme (GBM) is the most common cancer of the central nervous system, while Parkinson's disease (PD) is a degenerative neurological condition frequently affecting the elderly. Neurotrophic factors are key factors associated with the progression of degenerative neuropathies and gliomas. Methods: The 2601 neurotrophic factor-related genes (NFRGs) available in the Genecards portal were analyzed and 12 NFRGs with potential roles in the pathogenesis of Parkinson's disease and the prognosis of GBM were identified. LASSO regression and random forest algorithms were then used to screen the key NFRGs. The correlation of the key NFRGs with immune pathways was verified using GSEA (Gene Set Enrichment Analysis). A prognostic risk scoring system was constructed using LASSO (Least absolute shrinkage and selection operator) and multivariate Cox risk regression based on the expression of the 12 NFRGs in the GBM cohort from The Cancer Genome Atlas (TCGA) database. We also investigated differences in clinical characteristics, mutational landscape, immune cell infiltration, and predicted efficacy of immunotherapy between risk groups. Finally, the accuracy of the model genes was validated using multi-omics mutation analysis, single-cell sequencing, QT-PCR, and HPA. Results: We found that 4 NFRGs were more reliable for the diagnosis of Parkinson's disease through the use of machine learning techniques. These results were validated using two external cohorts. We also identified 7 NFRGs that were highly associated with the prognosis and diagnosis of GBM. Patients in the low-risk group had a greater overall survival (OS) than those in the high-risk group. The nomogram generated based on clinical characteristics and risk scores showed strong prognostic prediction ability. The NFRG signature was an independent prognostic predictor for GBM. The low-risk group was more likely to benefit from immunotherapy based on the degree of immune cell infiltration, expression of immune checkpoints (ICs), and predicted response to immunotherapy. In the end, 2 NFRGs (EN1 and LOXL1) were identified as crucial for the development of Parkinson's disease and the outcome of GBM. Conclusions: Our study revealed that 4 NFRGs are involved in the progression of PD. The 7-NFRGs risk score model can predict the prognosis of GBM patients and help clinicians to classify the GBM patients into high and low risk groups. EN1, and LOXL1 can be used as therapeutic targets for personalized immunotherapy for patients with PD and GBM.


Assuntos
Glioblastoma , Glioma , Doença de Parkinson , Idoso , Humanos , Glioblastoma/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Sistema Nervoso Central , Fatores de Risco
9.
BMC Cancer ; 22(1): 1274, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474171

RESUMO

BACKGROUND: This study aimed to use single-cell RNA-seq (scRNA-seq) to discover marker genes in endothelial cells (ECs) and construct a prognostic model for glioblastoma multiforme (GBM) patients in combination with traditional high-throughput RNA sequencing (bulk RNA-seq). METHODS: Bulk RNA-seq data was downloaded from The Cancer Genome Atlas (TCGA) and The China Glioma Genome Atlas (CGGA) databases. 10x scRNA-seq data for GBM were obtained from the Gene Expression Omnibus (GEO) database. The uniform manifold approximation and projection (UMAP) were used for downscaling and cluster identification. Key modules and differentially expressed genes (DEGs) were identified by weighted gene correlation network analysis (WGCNA). A non-negative matrix decomposition (NMF) algorithm was used to identify the different subtypes based on DEGs, and multivariate cox regression analysis to model the prognosis. Finally, differences in mutational landscape, immune cell abundance, immune checkpoint inhibitors (ICIs)-associated genes, immunotherapy effects, and enriched pathways were investigated between different risk groups. RESULTS: The analysis of scRNA-seq data from eight samples revealed 13 clusters and four cell types. After applying Fisher's exact test, ECs were identified as the most important cell type. The NMF algorithm identified two clusters with different prognostic and immunological features based on DEGs. We finally built a prognostic model based on the expression levels of four key genes. Higher risk scores were significantly associated with poorer survival outcomes, low mutation rates in IDH genes, and upregulation of immune checkpoints such as PD-L1 and CD276. CONCLUSION: We built and validated a 4-gene signature for GBM using 10 scRNA-seq and bulk RNA-seq data in this work.


Assuntos
Células Endoteliais , Glioblastoma , Humanos , Prognóstico , Glioblastoma/genética , Sequência de Bases , RNA-Seq , Antígenos B7
10.
Front Endocrinol (Lausanne) ; 13: 1056310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568076

RESUMO

Background: Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults and is highly metastatic, resulting in a poor patient prognosis. Sphingolipid metabolism plays an important role in tumor development, diagnosis, and prognosis. This study aimed to establish a reliable signature based on sphingolipid metabolism genes (SMGs), thus providing a new perspective for assessing immunotherapy response and prognosis in patients with UVM. Methods: In this study, SMGs were used to classify UVM from the TCGA-UVM and GEO cohorts. Genes significantly associated with prognosis in UVM patients were screened using univariate cox regression analysis. The most significantly characterized genes were obtained by machine learning, and 4-SMGs prognosis signature was constructed by stepwise multifactorial cox. External validation was performed in the GSE84976 cohort. The level of immune infiltration of 4-SMGs in high- and low-risk patients was analyzed by platforms such as CIBERSORT. The prediction of 4-SMGs on immunotherapy and immune checkpoint blockade (ICB) response in UVM patients was assessed by ImmuCellAI and TIP portals. Results: 4-SMGs were considered to be strongly associated with the prognosis of UVM and were good predictors of UVM prognosis. Multivariate analysis found that the model was an independent predictor of UVM, with patients in the low-risk group having higher overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores had good prognostic power. The high-risk group showed better results when receiving immunotherapy. Conclusions: 4-SMGs signature and nomogram showed excellent predictive performance and provided a new perspective for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology studies.


Assuntos
Melanoma , Adulto , Humanos , Prognóstico , Melanoma/genética , Aprendizado de Máquina , Esfingolipídeos
11.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358764

RESUMO

Although N7-methylguanosine (m7G) modification serves as a tumor promoter in bladder cancer (BLCA), the comprehensive role of m7G-related characterization in BLCA remains unclear. In this study, we systematically evaluated the m7G-related clusters of 760 BLCA patients through consensus unsupervised clustering analysis. Next, we investigated the underlying m7G-related genes among these m7G-related clusters. Univariate Cox and LASSO regressions were used for screening out prognostic genes and for reducing the dimension, respectively. Finally, we developed a novel m7G-related scoring system via the GSVA algorithm. The correlation between tumor microenvironment, prediction of personalized therapies and this m7G-related signature was gradually revealed. We first identified three m7G-related clusters and 1108 differentially expressed genes relevant to the three clusters. Based on the profile of 1108 genes, we divided BLCA patients into two clusters, which were quantified by our established m7G-related scoring system. Patients with higher m7G-related scores tended to have a better OS and more chances to benefit from immunotherapy. A significantly negative connection between sensitivity to classic chemotherapeutic drugs and m7G-related signature was uncovered. In summary, our data show that m7G-related characterization of BLCA patients can be of value for prognostic stratification and for patient-oriented therapeutic options, designing personalized treatment strategies in the preclinical setting.

12.
Front Immunol ; 13: 1018685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263048

RESUMO

Background: Head and neck squamous cell carcinoma (HNSCC), the most common head and neck cancer, is highly aggressive and heterogeneous, resulting in variable prognoses and immunotherapeutic outcomes. Natural killer (NK) cells play essential roles in malignancies' development, diagnosis, and prognosis. The purpose of this study was to establish a reliable signature based on genes related to NK cells (NRGs), thus providing a new perspective for assessing immunotherapy response and prognosis of HNSCC patients. Methods: In this study, NRGs were used to classify HNSCC from the TCGA-HNSCC and GEO cohorts. The genes were evaluated using univariate cox regression analysis based on the differential analysis of normal and tumor samples in TCGA-HNSCC conducted using the "limma" R package. Thereafter, we built prognostic gene signatures using LASSO-COX analysis. External validation was carried out in the GSE41613 cohort. Immunity analysis based on NRGs was performed via several methods, such as CIBERSORT, and immunotherapy response was evaluated by TIP portal website. Results: With the TCGA-HNSCC data, we established a nomogram based on the 17-NRGs signature and a variety of clinicopathological characteristics. The low-risk group exhibited a better effect when it came to immunotherapy. Conclusions: 17-NRGs signature and nomograms demonstrate excellent predictive performance and offer new perspectives for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology research.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Prognóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Células Matadoras Naturais , Nomogramas
13.
Brain Sci ; 12(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36291283

RESUMO

Low-grade glioma (LGG) is a highly aggressive disease in the skull. On the other hand, anoikis, a specific form of cell death induced by the loss of cell contact with the extracellular matrix, plays a key role in cancer metastasis. In this study, anoikis-related genes (ANRGs) were used to identify LGG subtypes and to construct a prognostic model for LGG patients. In addition, we explored the immune microenvironment and enrichment pathways between different subtypes. We constructed an anoikis-related gene signature using the TCGA (The Cancer Genome Atlas) cohort and investigated the differences between different risk groups in clinical features, mutational landscape, immune cell infiltration (ICI), etc. Kaplan-Meier analysis showed that the characteristics of ANRGs in the high-risk group were associated with poor prognosis in LGG patients. The risk score was identified as an independent prognostic factor. The high-risk group had higher ICI, tumor mutation load (TMB), immune checkpoint gene expression, and therapeutic response to immune checkpoint blockers (ICB). Functional analysis showed that these high-risk and low-risk groups had different immune statuses and drug sensitivity. Risk scores were used together with LGG clinicopathological features to construct a nomogram, and Decision Curve Analysis (DCA) showed that the model could enable patients to benefit from clinical treatment strategies.

14.
Genes (Basel) ; 13(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36292695

RESUMO

Gliomas that are classified as grade II or grade III lesions by the World Health Organization (WHO) are highly aggressive, and some may develop into glioblastomas within a short period, thus portending the conferral of a poor prognosis for patients. Previous studies have implicated basement membrane (BM)-related genes in glioma development. In this study, we constructed a prognostic model for WHO grade II/III gliomas in accordance with the risk scores of BM-related genes. Differentially expressed genes (DEGs) in the glioma samples relative to normal samples were screened from the GEO database, and five prognostically relevant BM-related genes, including NELL2, UNC5A, TNC, CSPG4, and SMOC1, were selected using Cox regression analyses for the risk score model. The median risk score was calculated, based on which high- and low-risk groups of patients were generated. The clinical information, pathological information, and risk group were combined to establish a prognostic nomogram. Both the nomogram and risk score model performed well in the independent CGGA cohort. Gene set enrichment analysis (GSEA) and immune profile, drug sensitivity, and tumor mutation burden (TMB) analyses were performed in the two risk groups. A significant enrichment of 'Autophagy-other', 'Collecting duct acid secretion', 'Glycosphingolipid biosynthesis-lacto and neolacto series', 'Valine, leucine, and isoleucine degradation', 'Vibrio cholerae infection', and other pathways were observed for patients with high risk. In addition, higher proportions of monocytes and resting CD4 memory T cells were observed in the low- and high-risk groups, respectively. In conclusion, the BM-related gene risk score model can guide the clinical management of WHO grade II and III gliomas.


Assuntos
Glioma , Isoleucina , Humanos , Leucina , Glioma/genética , Glioma/patologia , Prognóstico , Organização Mundial da Saúde , Membrana Basal/patologia , Valina , Glicoesfingolipídeos
15.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233273

RESUMO

Although some biomarkers have been used to predict prognosis of lower-grade gliomas (LGGs), a pathway-related signature associated with immune response has not been developed. A key signaling pathway was determined according to the lowest adjusted p value among 50 hallmark pathways. The least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox analyses were performed to construct a pathway-related gene signature. Somatic mutation, drug sensitivity and prediction of immunotherapy analyses were conducted to reveal the value of this signature in targeted therapies. In this study, an allograft rejection (AR) pathway was considered as a crucial signaling pathway, and we constructed an AR-related five-gene signature, which can independently predict the prognosis of LGGs. High-AR LGG patients had higher tumor mutation burden (TMB), Immunophenscore (IPS), IMmuno-PREdictive Score (IMPRES), T cell-inflamed gene expression profile (GEP) score and MHC I association immunoscore (MIAS) than low-AR patients. Most importantly, our signature can be validated in four immunotherapy cohorts. Furthermore, IC50 values of the six classic chemotherapeutic drugs were significantly elevated in the low-AR group compared with the high-AR group. This signature might be regarded as an underlying biomarker in predicting prognosis for LGGs, possibly providing more therapeutic strategies for future clinical research.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/terapia , Humanos , Imunidade , RNA Mensageiro/genética
16.
J Healthc Eng ; 2022: 8704127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535221

RESUMO

Pyroptosis plays a critical role in the immune response to immune checkpoint inhibitors (ICIs) by mediating the tumor immune microenvironment. However, the impact of pyroptosis-related biomarkers on the prognosis and efficacy of ICIs in patients with lower-grade gliomas (LGGs) is unclear. An unsupervised clustering analysis identified pyroptosis-related subtypes (PRSs) based on the expression profile of 47 pyroptosis-related genes in The Cancer Genome Atlas-LGG cohort. A PRS gene signature was established using univariate Cox regression, random survival forest, least absolute shrinkage and selection operator, and stepwise multivariable Cox regression analyses. The predictive power of this signature was validated in the Chinese Glioma Genome Atlas database. We also investigated the differences between high- and low-risk groups in terms of the tumor immune microenvironment, tumor mutation, and response to target therapy and ICIs. The PRS gene signature comprised eight PRS genes, which independently predicted the prognosis of LGG patients. High-risk patients had a worse overall survival than did the low-risk patients. The high-risk group also displayed a higher proportion of M1 macrophages and CD8+ T cells and higher immune scores, tumor mutational burden, immunophenoscore, IMmuno-PREdictive Score, MHC I association immune score, and T cell-inflamed gene expression profile scores, but lower suppressor cells scores, and were more suitable candidates for ICI treatment. Higher risk scores were more frequent in patients who responded to ICIs using data from the ImmuCellAI website. The presently established PRS gene signature can be validated in melanoma patients treated with real ICI treatment. This signature is valuable in predicting prognosis and ICI treatment of LGG patients, pending further prospective verification.


Assuntos
Glioma , Inibidores de Checkpoint Imunológico , Linfócitos T CD8-Positivos , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Prognóstico , Piroptose/genética , Microambiente Tumoral
17.
Aging (Albany NY) ; 14(3): 1429-1447, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35143414

RESUMO

Reliable biomarkers are needed to recognize urologic cancer patients at high risk for recurrence. In this study, we built a novel immune-related gene pairs signature to simultaneously predict recurrence for three urologic cancers. We gathered 14 publicly available gene expression profiles including bladder, prostate and kidney cancer. A total of 2,700 samples were classified into the training set (n = 1,622) and validation set (n = 1,078). The 25 immune-related gene pairs signature consisting of 41 unique genes was developed by the least absolute shrinkage and selection operator regression analysis and Cox regression model. The signature stratified patients into high- and low-risk groups with significantly different relapse-free survival in the meta-training set and its subpopulations, and was an independent prognostic factor of urologic cancers. This signature showed a robust ability in the meta-validation and multiple independent validation cohorts. Immune and inflammatory response, chemotaxis and cytokine activity were enriched with genes relevant to the signature. A significantly higher infiltration level of M1 macrophages was found in the high-risk group versus the low-risk group. In conclusion, our signature is a promising prognostic biomarker for predicting relapse-free survival in patients with urologic cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias Renais , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias Renais/genética , Masculino , Recidiva Local de Neoplasia/genética , Prognóstico , Modelos de Riscos Proporcionais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA