Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 148(4): 1740-59, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842825

RESUMO

The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.


Assuntos
Evolução Molecular , Duplicação Gênica , Genes de Plantas , Glycine max/genética , Poliploidia , Retroelementos , Centrômero/genética , Cromossomos Artificiais Bacterianos , DNA de Plantas/química , Deleção de Genes , Genoma de Planta , Imunidade Inata/genética , Família Multigênica , Mutagênese Insercional , Phaseolus/genética , Filogenia , Doenças das Plantas/genética , Análise de Sequência de DNA
2.
Eukaryot Cell ; 3(5): 1088-100, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15470237

RESUMO

Genomic sequences and expressed sequence tag data for a diverse group of fungi (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, Neurospora crassa, and Cryptococcus neoformans) provided the opportunity to accurately characterize conserved intronic elements. An examination of large intron data sets revealed that fungal introns in general are short, that 98% or more of them belong to the canonical splice site (ss) class (5'GU...AG3'), and that they have polypyrimidine tracts predominantly in the region between the 5' ss and the branch point. Information content is high in the 5' ss, branch site, and 3' ss regions of the introns but low in the exon regions adjacent to the introns in the fungi examined. The two yeasts have broader intron length ranges and correspondingly higher intron information content than the other fungi. Generally, as intron length increases in the fungi, so does intron information content. Homologs of U2AF spliceosomal proteins were found in all species except for S. cerevisiae, suggesting a nonconventional role for U2AF in the absence of canonical polypyrimidine tracts in the majority of introns. Our observations imply that splicing in fungi may be different from that in vertebrates and may require additional proteins that interact with polypyrimidine tracts upstream of the branch point. Theoretical protein homologs for Nam8p and TIA-1, two proteins that require U-rich regions upstream of the branch point to function, were found. There appear to be sufficient differences between S. cerevisiae and S. pombe introns and the introns of two filamentous members of the Ascomycota and one member of the Basidiomycota to warrant the development of new model organisms for studying the splicing mechanisms of fungi.


Assuntos
Fungos/genética , Íntrons , Splicing de RNA/genética , Aspergillus nidulans/genética , Sequência de Bases , Sequência Consenso , Cryptococcus neoformans/genética , DNA Fúngico/química , DNA Fúngico/genética , Éxons , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Genoma Fúngico , Neurospora crassa/genética , Filogenia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Especificidade da Espécie , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA