Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
ACS Omega ; 9(32): 34268-34280, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157138

RESUMO

Stimuli-responsive polymeric micelles decorated with cancer biomarkers represent an optimal choice for drug delivery applications due to their ability to enhance therapeutic efficacy while mitigating adverse side effects. Accordingly, we synthesized a digoxin-modified novel multifunctional redox-responsive disulfide-linked poly(ethylene glycol-b-poly(lactic-co-glycolic acid) copolymer (Bi(Dig-PEG-PLGA)-S2) for the targeted and controlled release of doxorubicin (DOX) in cancer cells. Within the micellar aggregate, the disulfide bond confers redox responsiveness, while the presence of the digoxin moiety acts as a targeting agent and chemosensitizer for DOX. Upon self-assembly in aqueous solution, Bi(Dig-PEG-PLGA)-S2 formed uniformly distributed spherical micelles with a hydrodynamic diameter (D h ) of 58.36 ± 0.78 nm and a zeta potential of -24.71 ± 1.01 mV. The micelles exhibited desirable serum and colloidal stability with a substantial drug loading capacity (DLC) of 6.26% and an encapsulation efficiency (EE) of 83.23%. In addition, the release of DOX demonstrated the redox-responsive behavior of the micelles, with approximately 89.41 ± 6.09 and 79.64 ± 6.68% of DOX diffusing from DOX@Bi(Dig-PEG-PLGA)-S2 in the presence of 10 mM GSH and 0.1 mM H2O2, respectively, over 96 h. Therefore, in HeLa cell lines, DOX@Bi(Dig-PEG-PLGA)-S2 showed enhanced intracellular accumulation and subsequent apoptotic effects, attributed to the targeting ability and chemosensitization potential of digoxin. Hence, these findings underscore the promising characteristics of Bi(Dig-PEG-PLGA)-S2 as a multifunctional drug delivery vehicle for cancer treatment.

2.
Colloids Surf B Biointerfaces ; 241: 114028, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38905811

RESUMO

Biotin receptors are overexpressed in various cancer cell types, essential in tumor development, metabolism, and metastasis. Chemotherapeutic agents may be more effective and have fewer adverse effects if they specifically target the biotin receptors on cancer cells. Polymeric micelles (PMs) with nanoscale size via the EPR effect to accumulate near tumor tissue. We utilized the solvent exchange technique to crate polymeric Biotin-PEG-SeSe-PBLA micelles. This underwent self-assembly to create uniformly dispersed PMs with a hydrodynamic diameter of 81.54 ± 0.23 nm. The resulting PMs characterized by 1HNMR, 13CNMR, FTIR, and Raman spectroscopy. PMs exhibited a high efficacy of Doxorubicin encapsulation (EE) and loading content (DLC), with values of 5.93 wt% and 74.32 %, respectively. DOX@Biotin-PEG-SeSe-PBLA micelles showed optimal DOX release, around 89 % and 74 % in 10 mM glutathione and 0.1 % H2O2, respectively, within 72 hours, in the simulated cancer redox pool. Fascinatingly, the blank Biotin-PEG-SeSe-PBLA micelles did not affect the HaCaT or HeLa cell lines; approximately 85 % of the cells were metabolically active. Contrarily, at a 5 µg/ml concentration, DOX@Biotin-PEG-SeSe-PBLA specifically inhibited the proliferation of roughly 76 % of HeLa cells and 11 % of HaCaT cells. The fluorescence microscopy results demonstrated that biotin-decorated micelles were more successfully internalized by HeLa cells, which overexpress the biotin receptor, than by non-targeted micelles in vitro. In summary, the diselenide-linked Biotin-PEGSeSe-PBLA formed smart PMs that could offer DOX specific to cancer cells with precision and are physiologically durable.


Assuntos
Biotina , Doxorrubicina , Liberação Controlada de Fármacos , Micelas , Oxirredução , Polietilenoglicóis , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Biotina/química , Polietilenoglicóis/química , Células HeLa , Propriedades de Superfície , Sistemas de Liberação de Medicamentos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Polímeros/química , Portadores de Fármacos/química
3.
Polymers (Basel) ; 16(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38475376

RESUMO

Oil/water separation processes have garnered significant global attention due to the quick growth in industrial development, recurring chemical leakages, and oil spills. Hence, there is a significant demand for the development of inexpensive superwetting materials in an eco-friendly manner to separate oil/water mixtures and emulsions. In this study, a superwetting melamine sponge (SMS) with switchable wettabilities was prepared by modifying melamine sponge (MS) with sodium dodecanoate. The as-prepared SMS exhibited superhydrophobicity, superoleophilicity, underwater superoleophobicity, and underoil superhydrophobicity. The SMS can be utilized in treating both light and heavy oil/water mixtures through the prewetting process. It demonstrated fast permeation fluxes (reaching 108,600 L m-2 h-1 for a light oil/water mixture and 147,700 L m-2 h-1 for a heavy oil/water mixture) and exhibited good separation efficiency (exceeding 99.56%). The compressed SMS was employed in separating surfactant-stabilized water-in-oil emulsions (SWOEs), as well as surfactant-stabilized oil-in-water emulsions (SOWEs), giving high permeation fluxes (reaching 7210 and 5054 L m-2 h-1, respectively). The oil purity for SWOEs' filtrates surpassed 99.98 wt% and the separation efficiencies of SOWEs exceeded 98.84%. Owing to their remarkable capability for separating oil/water mixtures and emulsions, eco-friendly fabrication method, and feasibility for large-scale production, our SMS has a promising potential for practical applications.

4.
Pharmaceutics ; 15(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839677

RESUMO

We present a breakthrough in the synthesis and development of functional gas-responsive materials as highly potent anticancer agents suitable for applications in cancer treatment. Herein, we successfully synthesised a stimuli-responsive multifunctional material (I-R6G) consisting of a carbon dioxide (CO2)-sensitive imidazole moiety and spirolactam-containing conjugated rhodamine 6G (R6G) molecule. The resulting I-R6G is highly hydrophobic and non- or weakly fluorescent. Simple CO2 bubbling treatment induces hydrophobic I-R6G to completely dissolve in water and subsequently form self-assembled nanoparticles, which exhibit unique optical absorption and fluorescence behaviours in water and extremely low haemolytic ability against sheep red blood cells. Reversibility testing indicated that I-R6G undergoes reversible CO2/nitrogen (N2)-dependent stimulation in water, as its structural and physical properties can be reversibly and stably switched by alternating cycles of CO2 and N2 bubbling. Importantly, in vitro cellular assays clearly demonstrated that the CO2-protonated imidazole moiety promotes rapid internalisation of CO2-treated I-R6G into cancer cells, which subsequently induces massive levels of necrotic cell death. In contrast, CO2-treated I-R6G was not internalised and did not affect the viability of normal cells. Therefore, this newly created system may provide an innovative and efficient route to remarkably improve the selectivity, safety and efficacy of cancer treatment.

5.
Biomacromolecules ; 24(2): 943-956, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36645325

RESUMO

A new potential route to enhance the efficiency of supramolecular polymers for cancer chemotherapy was successfully demonstrated by employing a photosensitive metallosupramolecular polymer (Hg-BU-PPG) containing an oligomeric poly(propylene glycol) backbone and highly sensitive pH-responsive uracil-mercury-uracil (U-Hg-U) bridges. This route holds great promise as a multifunctional bioactive nano-object for development of more efficient and safer cancer chemotherapy. Owing to the formation of uracil photodimers induced by ultraviolet irradiation, Hg-BU-PPG can form a photo-cross-linked structure and spontaneously forms spherical nanoparticles in aqueous solution. The irradiated nanoparticles possess many unique characteristics, such as unique fluorescence behavior, highly sensitive pH-responsiveness, and intriguing phase transition behavior in aqueous solution as well as high structural stability and antihemolytic activity in biological media. More importantly, a series of cellular studies clearly confirmed that the U-Hg-U photo-cross-links in the irradiated nanoparticles substantially enhance their selective cellular uptake by cancer cells via macropinocytosis and the mercury-loaded nanoparticles subsequently induce higher levels of cytotoxicity in cancer cells (compared to non-irradiated nanoparticles), without harming normal cells. These results are mainly attributed to cancer cell microenvironment-triggered release of mercury ions from disassembled nanoparticles, which rapidly induce massive levels of apoptosis in cancer cells. Overall, the pH-sensitive U-Hg-U photo-cross-links within this newly discovered supramolecular system are an indispensable factor that offers a potential path to remarkably enhance the selective therapeutic effects of functional nanoparticles toward cancer cells.


Assuntos
Mercúrio , Nanopartículas , Neoplasias , Polímeros/química , Portadores de Fármacos/química , Nanopartículas/química , Uracila/química , Concentração de Íons de Hidrogênio
6.
ACS Biomater Sci Eng ; 8(6): 2403-2418, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35649177

RESUMO

The efficiency of chemotherapy is frequently affected by its multidrug resistance, immune suppression, and severe side effects. Its combination with immunotherapy to reverse immune suppression and enhance immunogenic cell death (ICD) has emerged as a new strategy to overcome the aforementioned issues. Herein, we construct a pH-responsive PAMAM dendritic nanocarrier-incorporated hydrogel for the co-delivery of immunochemotherapeutic drugs. The stepwise conjugation of moieties and drug load was confirmed by various techniques. In vitro experimental results demonstrated that PAMAM dendritic nanoparticles loaded with a combination of drugs exhibited spherical nanosized particles, facilitated the sustained release of drugs, enhanced cellular uptake, mitigated cell viability, and induced apoptosis. The incorporation of PAB-DOX/IND nanoparticles into thermosensitive hydrogels also revealed the formation of a gel state at a physiological temperature and further a robust sustained release of drugs at the tumor microenvironment. Local injection of this formulation into HeLa cell-grafted mice significantly suppressed tumor growth, induced immunogenic cell death-associated cytokines, reduced cancer cell proliferation, and triggered a CD8+ T-cell-mediated immune response without obvious systemic toxicity, which indicates a synergistic ICD effect and reverse of immunosuppression. Hence, the localized delivery of immunochemotherapeutic drugs by a PAMAM dendritic nanoparticle-incorporated hydrogel could provide a promising strategy to enhance antitumor activity in cancer therapy.


Assuntos
Hidrogéis , Nanopartículas , Animais , Preparações de Ação Retardada , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Células HeLa , Humanos , Imunidade , Morte Celular Imunogênica , Imunoterapia , Camundongos , Nanopartículas/uso terapêutico
7.
Anal Chim Acta ; 1199: 339567, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35227379

RESUMO

Electrically conductive polymer nanomaterials signify a promising class of sensing platforms in the field of electrochemistry, but their applications as electrocatalysts are commonly limited by their poor colloidal stability in aqueous media and large particle sizes. Inspired by biomineralization approaches for integrating nanoscale materials, herein, a gadolinium (Gd)-integrated polypyrrole (PPy) electrocatalyst (namely, BSA@PPy-Gd) was successfully prepared by choosing bovine serum albumin (BSA) as a stabilizer for biomimetic mineralization and polymerization in a "one-step" manner. BSA@PPy-Gd possesses outstanding water dispersibility, nanoscale morphology, and improved electrical conductivity. The electrocatalytic competency of the electrochemical (EC) sensing platform fabricated for the sensitive detection of nicardipine (NCD) was assessed. The synergy of remarkable conductivity, superior active surface area, and electrostatic interactions stimulated by the combination of BSA with the NH group of PPy on BSA@PPy-Gd and Gd increases the fast electron transfer at the analyte-electrode junction. The fabricated EC sensor, BSA@PPy-Gd/glassy carbon electrode (GCE), exhibits a current intensity greater than that of PPy/GCE, BSA/GCE, and bare GCE in terms of peak height at a pH of 7.0 in phosphate buffer solution. The newly fabricated EC sensing platform shows excellent electrocatalytic activities for the electroreduction of NCD in terms of a low detection limit (2 nM), good sensitivity, linear dynamic detection ranges (0.01-575 µM), operational stability, and repeatability and was also tested on rat and human serum specimens.


Assuntos
Polímeros , Pirróis , Animais , Biomimética , Eletrodos , Gadolínio , Nicardipino , Ratos
8.
Colloids Surf B Biointerfaces ; 213: 112391, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35158218

RESUMO

Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR)-based tumor targeted 4.5 generation poly(amidoamine) dendrimer(4.5GDP)-cisplatin (Cis-pt) nanocomplex (NC) (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs were examined via FTIR spectroscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The conjugation of Cis-pt with 4.5GDP was confirmed using carbon NMR spectroscopy. The tumor-specific 4.5GDP-Cis-pt NC provided 45%and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed for the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NPs were biocompatible with different cell lines, even at a high concentration (200 µg mL-1). However, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL-1) significantly increased the cytotoxicity against the cancer cells in a dose-dependent manner with the increasing AC-IO-Ova NPs concentrations. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, AC-IO-Ova NPs might assist the efficiency of anticancer cells, inducing an innate immune response via M1 macrophage polarization. We provide a novel synergistic chemoimmunotherapeutic strategy to enhance the anticancer efficacy of cisplatin via a chemotherapeutic agent 4.5GDP-Cis-pt NC and induce proinflammatory cytokines stimulating innate immunity through AC-IO-Ova NPs against tumors.


Assuntos
Dendrímeros , Nanopartículas , Neoplasias , Sobrevivência Celular , Cisplatino/farmacologia , Dendrímeros/farmacologia , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química , Neoplasias/terapia , Ovalbumina , Poliaminas
9.
Sci Adv ; 7(40): eabi9062, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586854

RESUMO

In membrane-based separation, molecular size differences relative to membrane pore sizes govern mass flux and separation efficiency. In applications requiring complex molecular differentiation, such as in natural gas processing, cascaded pore size distributions in membranes allow different permeate molecules to be separated without a reduction in throughput. Here, we report the decoration of microporous polymer membrane surfaces with molecular fluorine. Molecular fluorine penetrates through the microporous interface and reacts with rigid polymeric backbones, resulting in membrane micropores with multimodal pore size distributions. The fluorine acts as angstrom-scale apertures that can be controlled for molecular transport. We achieved a highly effective gas separation performance in several industrially relevant hollow-fibrous modular platform with stable responses over 1 year.

10.
Int J Biol Macromol ; 191: 324-334, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34530038

RESUMO

In humans, excessive bleeding during civilian accidents, and surgery account for 40% of the mortality worldwide. Hence, the development of biocompatible hemostatic materials useful for rapid hemorrhage control has become a fundamental research problem in the biomedicine community. In this study, we prepared biocompatible gelatin-tannic acid-κ-carrageenan (GTC) microparticles using a facile Tween 80 stabilized water-in-oil (W/O) emulsion method for rapid hemostasis. The formation of GTC microparticles occurs via polyelectrolyte interactions between gelatin and k-carrageenan as well as hydrogen bonding from tannic acid. In addition, the GTC microparticles formulated in our study showed high water adsorption ability with a low volume-swelling ratio for a particle size of 46 µm. In addition, the GTC microparticles displayed >80% biocompatibility in NIH 3T3 cells and <5% hemocompatibility in hemolysis ratio tests. Notably, the GTC microparticles induced rapid blood clotting in 50 s and blood loss of approximately 46 mg in the femoral artery of BALB/c female mice with a 100% survival rate that was significantly better than the control group (blood clot time:250 s; blood loss: 259 mg). Thus, the findings from our study collectively suggest that GTC microparticles may play a promising clinical role in medical applications to tackle hemorrhage control.


Assuntos
Carragenina/química , Gelatina/química , Hemostáticos/química , Polieletrólitos/química , Taninos/química , Animais , Reagentes de Ligações Cruzadas/química , Feminino , Hemorragia/tratamento farmacológico , Hemostáticos/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA