Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Int J Biol Macromol ; 272(Pt 1): 132833, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834112

RESUMO

Chicken meat processing generates a substantial number of byproducts, which are either underutilized or improperly disposed. In this study, we employed in silico approaches to identify antioxidant peptides in chicken liver byproducts. Notably, the peptide WYR exhibited remarkable 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity with an IC50 of 0.13 ± 0.01 mg/mL and demonstrated stability under various conditions, including thermal, pH, NaCl, and simulated gastrointestinal digestion. Molecular docking analysis revealed significant hydrogen bonding interactions, while molecular dynamics showed differential stability with ABTS and 2,2-Diphenyl-1-picrylhydrazyl (DPPH). WYR exhibited improved stress resistance, decreased levels of reactive oxygen species (ROS), elevated the activities of superoxide dismutase (SOD) and catalase (CAT), and modulated the expression of crucial genes through the insulin/insulin-like growth factor (IIS) signaling pathway, mitogen-activated protein kinase (MAPK), and heat shock transcription factor-1 (HSF-1) pathways. These effects collectively contributed to the extension of Caenorhabditis elegans' lifespan. This study not only provides an effective method for antioxidant peptide analysis but also highlights the potential for enhancing the utilization of poultry byproducts.


Assuntos
Antioxidantes , Caenorhabditis elegans , Galinhas , Fígado , Simulação de Acoplamento Molecular , Peptídeos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Peptídeos/química , Peptídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/efeitos dos fármacos , Simulação por Computador , Superóxido Dismutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Catalase/metabolismo
2.
Immunity ; 57(3): 401-403, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479354

RESUMO

Exploring the mechanisms of microglia activation has revealed insights into the interconnections of the immune system and brain. Huang et al. demonstrate that the complex of sodium/potassium-transporting ATPase subunit alpha (NKAα1) and purinergic P2X7 receptor (P2X7R) maintains the resting state of microglial membranes. Stress increases free P2X7R that then binds to ATP to activate microglia, which may promote anxious behaviors.


Assuntos
Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/metabolismo , Microglia/metabolismo , Encéfalo/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Nano Lett ; 23(24): 11874-11883, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38097378

RESUMO

Antibiotic resistance is a global threat. Antimicrobial peptides (AMPs) are highly desirable to treat multidrug-resistant pathogen infection. However, few AMPs are clinically available, due to high cost, instability, and poor selectivity. Here, ultrashort AMPs (2-3 residues with an N-terminal cysteine) are designed and assembled as gold nanoparticles. Au-S conjugation and ultrashort size restrict nonspecific reactions and peptide orientation, thus concentrating positively charged residues on the surface. The nanostructured assemblies enormously enhance antimicrobial abilities by 1000-6000-fold and stability. One representative (Au-Cys-Arg-NH2, Au_CR) shows selective antibacterial activity against Staphylococcus aureus with 10 nM minimal inhibitory concentration. Au_CR has comparable or better in vivo antimicrobial potency than vancomycin and methicillin, with low propensity to induce resistance, little side effects, and high stability (17.5 h plasma half-life). Au_CR acts by inducing collapse of membrane potential and rupture of the bacterial membrane. The report provides insights for developing AMP-metal nanohybrids, particularly tethering nonspecific reactions and AMP orientation on the metal surface.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Ouro/química , Dipeptídeos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Nanopartículas Metálicas/química , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
4.
Mar Drugs ; 21(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37755093

RESUMO

Barnacles, a prevalent fouler organism in intertidal zones, has long been a source of annoyance due to significant economic losses and ecological impacts. Numerous antifouling approaches have been explored, including extensive research on antifouling chemicals. However, the excessive utilization of small-molecule chemicals appears to give rise to novel environmental concerns. Therefore, it is imperative to develop new strategies. Barnacles exhibit appropriate responses to environmental challenges with complex physiological processes and unique sensory systems. Given the assumed crucial role of bioactive peptides, an increasing number of peptides with diverse activities are being discovered in barnacles. Fouling-related processes have been identified as potential targets for antifouling strategies. In this paper, we present a comprehensive review of peptides derived from barnacles, aiming to underscore their significant potential in the quest for innovative solutions in biofouling prevention and drug discovery.


Assuntos
Incrustação Biológica , Thoracica , Animais , Incrustação Biológica/prevenção & controle , Descoberta de Drogas , Peptídeos/farmacologia
5.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446275

RESUMO

When Poecilobdella manillensis attacks its prey, the prey bleeds profusely but feels little pain. We and other research teams have identified several anticoagulant molecules in the saliva of P. manillensis, but the substance that produces the paralyzing effect in P. manillensis is not known. In this study, we successfully isolated, purified, and identified a serine protease inhibitor containing an antistasin-like domain from the salivary secretions of P. manillensis. This peptide (named poeciguamerin) significantly inhibited elastase activity and slightly inhibited FXIIa and kallikrein activity, but had no effect on FXa, trypsin, or thrombin activity. Furthermore, poeciguamerin exhibited analgesic activity in the foot-licking and tail-withdrawal mouse models and anticoagulant activity in the FeCl3-induced carotid artery thrombosis mouse model. In this study, poeciguamerin was found to be a promising elastase inhibitor with potent analgesic and antithrombotic activity for the inhibition of pain and thrombosis after surgery or in inflammatory conditions.


Assuntos
Sanguessugas , Serpinas , Trombose , Animais , Camundongos , Sanguessugas/química , Inibidores de Serina Proteinase , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Trombose/tratamento farmacológico , Elastase Pancreática , Analgésicos/farmacologia , Dor
6.
Chin J Nat Med ; 21(1): 19-35, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36641229

RESUMO

Evolution and natural selection have endowed animal venoms, including scorpion venoms, with a wide range of pharmacological properties. Consequently, scorpions, their venoms, and/or their body parts have been used since time immemorial in traditional medicines, especially in Africa and Asia. With respect to their pharmacological potential, bioactive peptides from scorpion venoms have become an important source of scientific research. With the rapid increase in the characterization of various components from scorpion venoms, a large number of peptides are identified with an aim of combating a myriad of emerging global health problems. Moreover, some scorpion venom-derived peptides have been established as potential scaffolds helpful for drug development. In this review, we summarize the promising scorpion venoms-derived peptides as drug candidates. Accordingly, we highlight the data and knowledge needed for continuous characterization and development of additional natural peptides from scorpion venoms, as potential drugs that can treat related diseases.


Assuntos
Venenos de Escorpião , Animais , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Peptídeos/farmacologia , Escorpiões , Desenvolvimento de Medicamentos , Medicina Tradicional
7.
Phytomedicine ; 108: 154492, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257220

RESUMO

BACKGROUND: Cancer stem cells (CSCs) are characterized by their ability to self-renew, to differentiate into multiple cell types and also drive tumor formation, altogether making them important cellular targets for therapeutic intervention. However, existing CSC-targeting drugs do not significantly improve clinical outcomes. More recently, preclinical studies of natural product-derived compounds have demonstrated their potential usefulness as a therapeutic cancer treatment through their cytotoxic actions on CSCs. PURPOSE: Here, we identify CSC-specific compounds derived from natural products and characterize their putative mechanisms of action in CSCs. METHODS: Glioblastoma stem cells (GSCs) were labeled with EGFP via homologous recombination and utilized for a high-throughput screen of 8,344 fractions from 386 herbal medicines. The fractions that extinguished EGFP fluorescence signal were then further characterized by LC-MS/MS. Next, several putative cytotoxic compounds were evaluated for their cytotoxic effects on GSCs, cancer cell lines and immortalized cells using a variety of methods to study cell proliferation (EdU incorporation assay), cell death (cleaved-Caspase-3 immunostaining), DNA damage (comet assay), mitochondrial membrane changes (JC-1 immunostaining), and tumor formation in vitro (soft agar colony forming assay). We also performed surface plasmon resonance analysis, western blotting, and immunohistochemistry to characterize the putative mechanisms underlying the cytotoxic effects of putative compounds on GSCs. Finally, we carried out xenograft tumor growth assays to study the cytotoxic potential of several candidates in vivo. RESULTS: Our high throughput screen led to the identification of the furostanol saponin taccaoside A and its two homologs from the rhizomatous geophyte Tacca. subflabellata that were cytotoxic to GSCs. Interestingly, the cytotoxic effect of taccaoside A on cell lines was significantly less compared to its homologs, owing to stereochemical differences of a carbon-carbon double bond between C-20 and C-22. Molecular studies revealed that taccaoside A binds to RAS to inhibit downstream effector signaling. Correspondingly, blockade of the interaction between taccaoside A and RAS abolished the inhibitory effect of this compound on CSCs. Furthermore, taccaoside A treatment was effective in limiting tumor cell growth in vivo. CONCLUSION: Our study yielded an effective approach to screen for CSC-specific agents. Through this approach, we identified taccaoside A from the rhizomatous geophyte Tacca. subflabellata are cytotoxic to CSCs through a molecular mechanism that involves RAS binding and suppression of its downstream signaling. Our findings indicate taccaoside A is a potential lead compound for anti-CSC drug discovery.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Cromatografia Líquida , Detecção Precoce de Câncer , Espectrometria de Massas em Tandem , Células-Tronco Neoplásicas , Antineoplásicos/farmacologia , Proliferação de Células , Glioblastoma/patologia , Carbono/metabolismo , Carbono/farmacologia , Linhagem Celular Tumoral
8.
Molecules ; 29(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202621

RESUMO

Spiders (Araneae), having thrived for over 300 million years, exhibit remarkable diversity, with 47,000 described species and an estimated 150,000 species in existence. Evolving with intricate venom, spiders are nature's skilled predators. While only a small fraction of spiders pose a threat to humans, their venoms contain complex compounds, holding promise as drug leads. Spider venoms primarily serve to immobilize prey, achieved through neurotoxins targeting ion channels. Peptides constitute a major part of these venoms, displaying diverse pharmacological activities, and making them appealing for drug development. Moreover, spider-venom peptides have emerged as valuable tools for exploring human disease mechanisms. This review focuses on the roles of spider-venom peptides in spider survival strategies and their dual significance as pharmaceutical research tools. By integrating recent discoveries, it provides a comprehensive overview of these peptides, their targets, bioactivities, and their relevance in spider survival and medical research.


Assuntos
Pesquisa Biomédica , Venenos de Aranha , Humanos , Desenvolvimento de Medicamentos , Neurotoxinas , Peptídeos/farmacologia , Venenos de Aranha/farmacologia
9.
Proc Natl Acad Sci U S A ; 119(46): e2212406119, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36346846

RESUMO

Defense against ultraviolet (UV) radiation exposure is essential for survival, especially in high-elevation species. Although some specific genes involved in UV response have been reported, the full view of UV defense mechanisms remains largely unexplored. Herein, we used integrated approaches to analyze UV responses in the highest-elevation frog, Nanorana parkeri. We show less damage and more efficient antioxidant activity in skin of this frog than those of its lower-elevation relatives after UV exposure. We also reveal genes related to UV defense and a corresponding temporal expression pattern in N. parkeri. Genomic and metabolomic analysis along with large-scale transcriptomic profiling revealed a time-dependent coordinated defense mechanism in N. parkeri. We also identified several microRNAs that play important regulatory roles, especially in decreasing the expression levels of cell cycle genes. Moreover, multiple defense genes (i.e., TYR for melanogenesis) exhibit positive selection with function-enhancing substitutions. Thus, both expression shifts and gene mutations contribute to UV adaptation in N. parkeri. Our work demonstrates a genetic framework for evolution of UV defense in a natural environment.


Assuntos
Anuros , Raios Ultravioleta , Animais , Anuros/genética , Pele , Perfilação da Expressão Gênica , Antioxidantes
10.
Proc Natl Acad Sci U S A ; 119(47): e2208274119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36383602

RESUMO

Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTßR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTßR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTßR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTßR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Doença de Lyme , Camundongos , Animais , Borrelia burgdorferi/genética , Saliva , Ixodes/fisiologia , Receptor beta de Linfotoxina
11.
Toxins (Basel) ; 14(9)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36136536

RESUMO

The venom and transcriptome profile of the captive Chinese cobra (Naja atra) is not characterized until now. Here, LC-MS/MS and illumine technology were used to unveil the venom and trascriptome of neonates and adults N. atra specimens. In captive Chinese cobra, 98 co-existing transcripts for venom-related proteins was contained. A total of 127 proteins belong to 21 protein families were found in the profile of venom. The main components of snake venom were three finger toxins (3-FTx), snake venom metalloproteinase (SVMP), cysteine-rich secretory protein (CRISP), cobra venom factor (CVF), and phosphodiesterase (PDE). During the ontogenesis of captive Chinese cobra, the rearrangement of snake venom composition occurred and with obscure gender difference. CVF, 3-FTx, PDE, phospholipase A2 (PLA2) in adults were more abundant than neonates, while SVMP and CRISP in the neonates was richer than the adults. Ontogenetic changes in the proteome of Chinese cobra venom reveals different strategies for handling prey. The levels of different types of toxin families were dramatically altered in the wild and captive specimens. Therefore, we speculate that the captive process could reshape the snake venom composition vigorously. The clear comprehension of the composition of Chinese cobra venom facilitates the understanding of the mechanism of snakebite intoxication and guides the preparation and administration of traditional antivenom and next-generation drugs for snakebite.


Assuntos
Naja naja , Mordeduras de Serpentes , Animais , Antivenenos/metabolismo , Cromatografia Líquida , Cisteína/metabolismo , Venenos Elapídicos/metabolismo , Metaloproteases/metabolismo , Naja naja/metabolismo , Fosfolipases A2/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Proteoma/metabolismo , Venenos de Serpentes/metabolismo , Espectrometria de Massas em Tandem
12.
Molecules ; 27(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889297

RESUMO

Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.


Assuntos
Venenos de Artrópodes , Artrópodes , Animais , Venenos de Artrópodes/química , Venenos de Artrópodes/farmacologia , Artrópodes/química , Quilópodes , Peptídeos/química , Proteínas/química , Peçonhas/metabolismo
13.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806107

RESUMO

Centipedes are one of the most ancient and successful living venomous animals. They have evolved spooky venoms to deter predators or hunt prey, and are widely distributed throughout the world besides Antarctica. Neurotoxins are the most important virulence factor affecting the function of the nervous system. Ion channels and receptors expressed in the nervous system, including NaV, KV, CaV, and TRP families, are the major targets of peptide neurotoxins. Insight into the mechanism of neurotoxins acting on ion channels contributes to our understanding of the function of both channels and centipede venoms. Meanwhile, the novel structure and selective activities give them the enormous potential to be modified and exploited as research tools and biological drugs. Here, we review the centipede venom peptides that act on ion channels.


Assuntos
Venenos de Artrópodes , Artrópodes , Animais , Venenos de Artrópodes/química , Artrópodes/química , Quilópodes , Canais Iônicos , Neurotoxinas/farmacologia , Peptídeos/química , Peptídeos/farmacologia
14.
Acta Pharm Sin B ; 12(5): 2268-2279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646538

RESUMO

Unlike healthy, non-transformed cells, the proteostasis network of cancer cells is taxed to produce proteins involved in tumor development. Cancer cells have a higher dependency on molecular chaperones to maintain proteostasis. The chaperonin T-complex protein ring complex (TRiC) contains eight paralogous subunits (CCT1-8), and assists the folding of as many as 10% of cytosolic proteome. TRiC is essential for the progression of some cancers, but the roles of TRiC subunits in osteosarcoma remain to be explored. Here, we show that CCT4/TRiC is significantly correlated in human osteosarcoma, and plays a critical role in osteosarcoma cell survival. We identify a compound anticarin-ß that can specifically bind to and inhibit CCT4. Anticarin-ß shows higher selectivity in cancer cells than in normal cells. Mechanistically, anticarin-ß potently impedes CCT4-mediated STAT3 maturation. Anticarin-ß displays remarkable antitumor efficacy in orthotopic and patient-derived xenograft models of osteosarcoma. Collectively, our data uncover a key role of CCT4 in osteosarcoma, and propose a promising treatment strategy for osteosarcoma by disrupting CCT4 and proteostasis.

15.
J Oncol ; 2022: 3819564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498543

RESUMO

Background: Whether more tumor numbers detected in surgery compared to preoperative image affecting survival of colorectal liver metastases (CRLM) patients after hepatectomy combined with microwave ablation (MWA) remains unclear. Methods: From 2013 to 2018, 85 CRLM patients who underwent hepatectomy combined with MWA were retrospectively assessed. Compared to the tumor numbers in preoperative image, patients with equal intraoperative tumor numbers were defined as the equal number group (n = 45); patients detected more tumor numbers in surgery were defined as the more number group (n = 40). Clinicopathological factors and prognosis were compared between two groups. Results: Compared to the equal number group, the more number group was characterized by more lymphatic metastasis, synchronous metastasis of liver lesion, and tumor numbers over 5 (all P < 0.05). Median survival time was 46.7 months and 26.8 months in the equal and more number group. Significantly worse overall survival (OS) was found in more number group to the equal number group (P = 0.027). In Cox analysis, more tumor number than image and high level of carbohydrate antigen 19-9 (CA19-9) were poor prognostic factors for OS. Conclusion: In patients receiving hepatectomy combined with MWA, detecting more liver metastases in surgery than preoperative image indicates poor long-term survival. These patients were characterized by more lymphatic metastasis, synchronous metastasis of liver lesion, and tumor numbers over 5. Intensive follow-up to detect early recurrence and potent postoperative therapy to improve survival may be justified in patients detected more tumor numbers in surgery with a high CA19-9 level.

16.
Biomolecules ; 12(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35454116

RESUMO

Wasps, members of the order Hymenoptera, use their venom for predation and defense. Accordingly, their venoms contain various constituents acting on the circulatory, immune and nervous systems. Wasp venom possesses many allergens, enzymes, bioactive peptides, amino acids, biogenic amines, and volatile matters. In particular, some peptides show potent antimicrobial, anti-inflammatory, antitumor, and anticoagulant activity. Additionally, proteinous components from wasp venoms can cause tissue damage or allergic reactions in organisms. These bioactive peptides and proteins involved in wasp predation and defense may be potential sources of lead pharmaceutically active molecules. In this review, we focus on the advances in bioactive peptides and protein from the venom of wasps and their biological effects, as well as the allergic reactions and immunotherapy induced by the wasp venom.


Assuntos
Hipersensibilidade , Vespas , Alérgenos , Animais , Peptídeos/farmacologia , Venenos de Vespas/química , Venenos de Vespas/farmacologia
17.
Front Immunol ; 12: 775678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899734

RESUMO

As said by former United Nations Secretary-General Kofi Annan, "Snakebite is the most important tropical disease you've never heard of." Listed as a priority neglected tropical disease by the World Health Organization, snakebite envenoming (SBE) kills in excess of 125,000 people per year. However, due to the complexity and overlap of snake venom compositions, few reliable venom diagnostic methods for genus-/species-specific identification, which is crucial for successful SBE therapy, are available. Here, we develop a strategy to select and prepare genus-specific snake venom antibodies, which allows rapid and efficient clinical diagnosis of snakebite. Multi-omics approaches are used to choose candidate antigens from snake venoms and identify genus-specific antigenic epitope peptide fragments (GSAEPs) with ideal immunogenicity, specificity, and spatial accessibility. Double-antibody sandwich ELISA kit was established by matching a polyclonal antibody against a natural antigen and a monoclonal antibody that was prepared by natural protein as antigen and can specifically target the GSAEPs. The kit shows the ability to accurately identify venoms from similar genera of Trimeresurus and Protobothrops with a detection limit of 6.25 ng/ml on the snake venoms and a little cross-reaction, thus proving high feasibility and applicability.


Assuntos
Antivenenos/imunologia , Ensaio de Imunoadsorção Enzimática , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/imunologia , Venenos de Serpentes/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Antivenenos/química , Ensaio de Imunoadsorção Enzimática/métodos , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Conformação Proteica , Sensibilidade e Especificidade , Venenos de Serpentes/química , Especificidade da Espécie , Relação Estrutura-Atividade
18.
Arch Toxicol ; 95(11): 3589-3599, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34519865

RESUMO

Venomous snakebites cause clinical manifestations that range from local to systemic and are considered a significant global health challenge. Persistent or refractory thrombocytopenia has been frequently reported in snakebite patients, especially in cases caused by viperidae snakes. Viper envenomation-induced thrombocytopenia may persist in the absence of significant consumption coagulopathy even after the antivenom treatment, yet the mechanism remains largely unknown. Our study aims to investigate the mechanism and discover novel therapeutic targets for coagulopathy-independent thrombocytopenia caused by viper envenomation. Here we found that patients bitten by Protobothrops mucrosquamatus and Trimeresurus stejnegeri, rather than Naja. atra may develop antivenom-resistant and coagulopathy-independent thrombocytopenia. Crude venoms and the derived C-type lectin-like proteins from these vipers significantly increased platelet surface expression of neuraminidase and platelet desialylation, therefore led to platelet ingestion by both macrophages and hepatocytes in vitro, and drastically decreased peripheral platelet counts in vivo. Our study is the first to demonstrate that desialylation-mediated platelet clearance is a novel mechanism of viper envenomation-induced refractory thrombocytopenia and C-type lectin-like proteins derived from the viper venoms contribute to snake venom-induced thrombocytopenia. The results of this study suggest the inhibition of platelet desialylation as a novel therapeutic strategy against viper venom-induced refractory thrombocytopenia.


Assuntos
Hepatócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Trombocitopenia/etiologia , Venenos de Víboras/toxicidade , Animais , Antivenenos/farmacologia , Plaquetas/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neuraminidase/metabolismo , Mordeduras de Serpentes/complicações , Trombocitopenia/patologia , Venenos de Víboras/química , Viperidae
19.
Front Oncol ; 11: 715673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408983

RESUMO

Glioma is the most common form of malignant brain cancer. It is very difficult to cure malignant glioma because of the presence of glioma stem cells, which are a barrier to cure, have high tumorigenesis, associated with drug resistance, and responsible for relapse by regulating stemness genes. In this study, our results demonstrated that anticarin ß, a natural compound from Antiaris toxicaria, can effectively and selectively suppress proliferation and cause apoptosis in glioma cells, which has an IC50 that is 100 times lower than that in mouse normal neural stem cells. Importantly, cell sphere formation assay and real time-quantitative analysis reveal that anticarin ß inhibits cancer stemness by modulating related stemness gene expression. Additionally, anticarin ß induces DNA damage to regulate the oncogene expression of signal transducer and activator of transcription 3 (STAT3), Akt, mitogen-activated protein kinases (MAPKs), and eventually leading to apoptosis. Furthermore, anticarin ß effectively inhibits glioma growth and prolongs the lifts pan of tumor-bearing mice without systemic toxicity in the orthotopic xenograft mice model. These results suggest that anticarin ß is a promising candidate inhibitor for malignant glioma.

20.
Zool Res ; 42(3): 335-338, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33998180

RESUMO

The global outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as of 8 May 2021, has surpassed 150 700 000 infections and 3 279 000 deaths worldwide. Evidence indicates that SARS-CoV-2 RNA can be detected on particulate matter (PM), and COVID-19 cases are correlated with levels of air pollutants. However, the mechanisms of PM involvement in the spread of SARS-CoV-2 remain poorly understood. Here, we found that PM exposure increased the expression level of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in several epithelial cells and increased the adsorption of the SARS-CoV-2 spike protein. Instillation of PM in a hACE2 mouse model significantly increased the expression of ACE2 and Tmprss2 and viral replication in the lungs. Furthermore, PM exacerbated the pulmonary lesions caused by SARS-CoV-2 infection in the hACE2 mice. In conclusion, our study demonstrated that PM is an epidemiological factor of COVID-19, emphasizing the necessity of wearing anti-PM masks to cope with this global pandemic.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/induzido quimicamente , COVID-19/imunologia , Material Particulado/efeitos adversos , SARS-CoV-2 , Adsorção/efeitos dos fármacos , Animais , Suscetibilidade a Doenças/induzido quimicamente , Suscetibilidade a Doenças/imunologia , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos , Material Particulado/química , RNA Viral/análise , SARS-CoV-2/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA