Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
ACS Nano ; 18(22): 13983-13999, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38767983

RESUMO

In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.


Assuntos
Nanomedicina , Humanos , Portadores de Fármacos/química , Lipossomos/química , Nanopartículas/química , Estados Unidos
2.
J Control Release ; 343: 303-313, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104570

RESUMO

Interactions between different cell types in the tumor microenvironment (TME) affect tumor growth. Tumor-associated fibroblasts produce C-X-C motif chemokine ligand 13 (CXCL13) which recruits B cells to the TME. B-cells in the TME differentiate into regulatory B cells (Bregs) (IL-10+CD1d+CD5+CD138+CD19+). We highlight these Breg cells as a new important factor in the modulation of the immunosuppressive TME in different desmoplastic murine tumor models. In addition, CXCL13 also stimulates epithelial-mesenchymal transition (EMT) of the tumor cells. The tumorigenic roles of CXCL13 led us to explore an innovative anti-cancer strategy based on delivering plasmid DNA encoding a CXCL13 trap to reduce Bregs differentiation and normalize EMT, thereby suppressing tumor growth. CXCL13 trap suppressed tumor growth in pancreatic cancer, BRAF-mutant melanoma, and triple-negative breast cancer. In this study, following treatment, the affected tumor remained dormant resulting in prolonged progression-free survival of the host.


Assuntos
Linfócitos B Reguladores , Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Neoplasias de Mama Triplo Negativas , Animais , Linfócitos B Reguladores/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34815336

RESUMO

Nonhormonal products for on-demand contraception are a global health technology gap; this unmet need motivated us to pursue the use of sperm-binding monoclonal antibodies to enable effective on-demand contraception. Here, using the cGMP-compliant Nicotiana-expression system, we produced an ultrapotent sperm-binding IgG antibody possessing 6 Fab arms per molecule that bind a well-established contraceptive antigen target, CD52g. We term this hexavalent antibody "Fab-IgG-Fab" (FIF). The Nicotiana-produced FIF had at least 10-fold greater sperm-agglutination potency and kinetics than the parent IgG, while preserving Fc-mediated trapping of individual spermatozoa in mucus. We formulated the Nicotiana-produced FIF into a polyvinyl alcohol-based water-soluble contraceptive film and evaluated its potency in reducing progressively motile sperm in the sheep vagina. Two minutes after vaginal instillation of human semen, no progressively motile sperm were recovered from the vaginas of sheep receiving FIF Film. Our work supports the potential of multivalent contraceptive antibodies to provide safe, effective, on-demand nonhormonal contraception.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticoncepção/métodos , Espermatozoides/imunologia , Administração Intravaginal , Animais , Anticorpos/imunologia , Anticoncepcionais/farmacologia , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Imunoglobulina G/farmacologia , Masculino , Modelos Animais , Ovinos , Motilidade dos Espermatozoides
4.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34518288

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells have shown considerable promise as a personalized cellular immunotherapy against B cell malignancies. However, the complex and lengthy manufacturing processes involved in generating CAR T cell products ex vivo result in substantial production time delays and high costs. Furthermore, ex vivo expansion of T cells promotes cell differentiation that reduces their in vivo replicative capacity and longevity. METHODS: Here, to overcome these limitations, CAR-T cells are engineered directly in vivo by administering a lentivirus expressing a mutant Sindbis envelope, coupled with a bispecific antibody binder that redirects the virus to CD3+ human T cells. RESULTS: This redirected lentiviral system offers exceptional specificity and efficiency; a single dose of the virus delivered to immunodeficient mice engrafted with human peripheral blood mononuclear cells generates CD19-specific CAR-T cells that markedly control the growth of an aggressive pre-established xenograft B cell tumor. CONCLUSIONS: These findings underscore in vivo engineering of CAR-T cells as a promising approach for personalized cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos/metabolismo , Lentivirus/patogenicidade , Receptores de Antígenos Quiméricos/metabolismo , Engenharia Tecidual/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos
5.
Int J Behav Nutr Phys Act ; 18(1): 52, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845853

RESUMO

BACKGROUND: There has been increasing interest in using wearable activity trackers to promote physical activity in youth. This study examined the short- and longer-term effects of a wearable activity tracker combined with digital behaviour change resources on the physical activity of adolescents attending schools in socio-economically disadvantaged areas. METHODS: The Raising Awareness of Physical Activity (RAW-PA) Study was a 12-week, multicomponent intervention that combined a Fitbit Flex (and accompanying app), and online digital behaviour change resources and weekly challenges delivered via Facebook. RAW-PA was evaluated using a cluster-randomised controlled trial with 275 adolescents (50.2% female; 13.7 ± 0.4 years) from 18 Melbourne secondary schools (intervention n = 9; wait-list control group n = 9). The primary outcome was moderate- to vigorous-intensity physical activity (MVPA), measured using hip-worn ActiGraph accelerometers. The secondary outcome was self-reported physical activity. Data were collected at baseline, 12-weeks (immediately post-intervention), and 6-months post-intervention (follow-up). Multilevel models were used to determine the effects of the intervention on daily MVPA over time, adjusting for covariates. RESULTS: No significant differences were observed between intervention and wait-list control adolescents' device-assessed MVPA immediately post-intervention. At 6-months post-intervention, adolescents in the intervention group engaged in 5 min (95% CI: - 9.1 to - 1.0) less MVPA per day than those in the wait-list control group. Males in the intervention group engaged in 11 min (95% CI: - 17.6 to - 4.5) less MVPA than males in the wait-list control group at 6-months post-intervention. No significant differences were observed for females at either time point. For self-reported physical activity, no significant effects were found at 12-weeks and 6-months post-intervention. CONCLUSIONS: Combining a wearable activity tracker with digital behaviour change resources and weekly challenges did not increase inactive adolescents' accelerometer-derived and self-reported physical activity levels immediately post-intervention. This contrasts previous research that has suggested wearable activity tracker may increase youth physical activity levels in the short-term. Lower engagement in MVPA 6-months post-intervention was observed for males but not for females, though it is unclear why this finding was observed. The results suggest wearable activity trackers, in combination with supporting materials, may not be effective for increasing physical activity levels in adolescents. TRIAL REGISTRATION: ACTRN12616000899448 . Australian and New Zealand Clinical Trials Registry. Registered 7 July 2016.


Assuntos
Exercício Físico , Monitores de Aptidão Física , Populações Vulneráveis , Adolescente , Austrália , Feminino , Humanos , Masculino , Instituições Acadêmicas , Comportamento Sedentário , Autorrelato , Fatores Socioeconômicos
6.
Biol Reprod ; 103(2): 275-285, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32607584

RESUMO

Sexually transmitted infections are highly prevalent, and over 40% of pregnancies are unplanned. We are producing new antibody-based multipurpose prevention technology products to address these problems and fill an unmet need in female reproductive health. We used a Nicotiana platform to manufacture monoclonal antibodies against two prevalent sexually transmitted pathogens, HIV-1 and HSV-2, and incorporated them into a vaginal film (MB66) for preclinical and Phase 1 clinical testing. These tests are now complete and indicate that MB66 is effective and safe in women. We are now developing an antisperm monoclonal antibody to add contraceptive efficacy to this product. The antisperm antibody, H6-3C4, originally isolated by Shinzo Isojima from the blood of an infertile woman, recognizes a carbohydrate epitope on CD52g, a glycosylphosphatidylinositol-anchored glycoprotein found in abundance on the surface of human sperm. We engineered the antibody for production in Nicotiana; the new antibody which we call "human contraception antibody," effectively agglutinates sperm at concentrations >10 µg/ml and maintains activity under a variety of physiological conditions. We are currently seeking regulatory approval for a Phase 1 clinical trial, which will include safety and "proof of principle" efficacy endpoints. Concurrently, we are working with new antibody production platforms to bring the costs down, innovative antibody designs that may produce more effective second-generation antibodies, and delivery systems to provide extended protection.


Assuntos
Anticorpos Monoclonais , Anticoncepção/métodos , Saúde Reprodutiva , Feminino , Humanos , Masculino
7.
mBio ; 11(1)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964730

RESUMO

Despite their exceptional potencies, the broad tropism of most commonly used lentivirus (LV) vectors limits their use for targeted gene delivery in vivo We hypothesized that we could improve the specificity of LV targeting by coupling (i) reduction of their binding to off-target cells with (ii) redirection of the vectors with a bispecific antibody (bsAb) that binds both LV and receptors on target cells. As a proof of concept, we pseudotyped nonreplicating LV using a mutated Sindbis envelope (mSindbis) with ablated binding to native receptors, while retaining the capacity to facilitate efficient fusion and endosomal escape. We then evaluated the transduction potencies of the mSindbis LV for HER2-positive (HER2+) (SKBR3) breast and HER2-negative (HER2-) (A2780) cells when redirected with different bsAbs. mSindbis LV alone failed to induce appreciable green fluorescent protein (GFP) expression in either cell. When mixed with HER2-targeting bsAb, mSindbis LV was exceptionally potent, transducing 12% to 16% of the SKBR3 cells at a multiplicity of infection (MOI [ratio of viral genome copies to target cells]) of 3. Transduction was highly specific, resulting in ∼50-fold-greater selectivity toward SKBR3 cells versus A2780 cells. Redirecting mSindbis LV led to a 10-fold improvement in cell-specific targeting compared to redirecting wild-type Sindbis LV with the same bsAb, underscoring the importance of ablating native virus tropism in order to maximize targeting specificity. The redirection of mutated LV using bsAb represents a potent and highly versatile platform for targeted gene therapy.IMPORTANCE The goal of gene therapy is specific delivery and expression of therapeutic genes to target cells and tissues. Common lentivirus (LV) vectors are efficient gene delivery vehicles but offer little specificity. Here, we report an effective and versatile strategy to redirect LV to target cells using bispecific antibodies (bsAbs) that bind both cell receptors and LV envelope domains. Importantly, we ablated the native receptor binding of LV to minimize off-target transduction. Coupling bsAb specificity and ablated native LV tropism synergistically enhanced the selectivity of our targeted gene delivery system. The modular nature of our bsAb-based redirection enables facile targeting of the same LV to diverse tissues/cells. By abrogating the native broad tropism of LV, our bsAb-LV redirection strategy may enable lentivirus-based gene delivery in vivo, expanding the current use of LV beyond ex vivo applications.


Assuntos
Anticorpos Biespecíficos/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Lentivirus/genética , Mutação , Anticorpos Biespecíficos/imunologia , Especificidade de Anticorpos/genética , Especificidade de Anticorpos/imunologia , Antígenos/imunologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Terapia Genética , Humanos , Ligação Proteica , Transdução Genética
8.
J Control Release ; 311-312: 138-146, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31454530

RESUMO

Antibodies that specifically bind polyethylene glycol (PEG), i.e. anti-PEG antibodies (APA), are associated with reduced efficacy and increased risk of serious adverse events for several PEGylated therapeutics. Here, we explored the concept of using free PEG molecules to saturate circulating APA. Surprisingly, we found that 40 kDa free PEG effectively restored the prolonged circulation of PEGylated liposomes in the presence of high titers of pre-existing APA for at least 48 h in mice. In contrast, lower molecular weight free PEG (≤10 kDa) failed to restore circulation beyond a few hours. These in vivo results were consistent with estimates from a minimal physiologically based pharmacokinetic model. Importantly, the infusion of free PEG appeared to be safe in mice previously sensitized by injection of PEGylated liposomes, and free PEG did not elicit excess APA production even in mice with pre-existing adaptive immunity against PEG. Our results support further investigation of high molecular weight free PEG as a potential method to control and overcome high titers of APA, restoring the prolonged circulation of PEGylated liposomes and possibly other PEGylated therapeutics.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Anticorpos/imunologia , Doxorrubicina/administração & dosagem , Polietilenoglicóis/administração & dosagem , Administração Intravenosa , Animais , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Feminino , Lipossomos , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Peso Molecular , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética
9.
Nanomedicine ; 21: 102076, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31394261

RESUMO

Pretargeting is an increasingly explored strategy to improve nanoparticle targeting, in which pretargeting molecules that bind both selected epitopes on target cells and nanocarriers are first administered, followed by the drug-loaded nanocarriers. Bispecific antibodies (bsAb) represent a promising class of pretargeting molecules, but how different bsAb formats may impact the efficiency of pretargeting remains poorly understood, in particular Fab valency and Fc receptor (FcR)-binding of bsAb. We found the tetravalent bsAb markedly enhanced PEGylated nanoparticle binding to target HER2+ cells relative to the bivalent bsAb in vitro. Pretargeting with tetravalent bsAb with abrogated FcR binding increased tumor accumulation of PEGylated liposomal doxorubicin (PLD) 3-fold compared to passively targeted PLD alone, and 5-fold vs pretargeting with tetravalent bsAb with normal FcR binding in vivo. Our work demonstrates that multivalency and elimination of FcRn recycling are both important features of pretargeting molecules, and further supports pretargeting as a promising nanoparticle delivery strategy.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos Imunológicos , Portadores de Fármacos , Neoplasias Experimentais , Polietilenoglicóis , Receptor ErbB-2/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Feminino , Humanos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , ômega-Cloroacetofenona
10.
J Infect Dis ; 218(6): 901-910, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29688496

RESUMO

Filoviruses, including Ebola, have the potential to be transmitted via virus-laden droplets deposited onto mucus membranes. Protecting against such emerging pathogens will require understanding how they may transmit at mucosal surfaces and developing strategies to reinforce the airway mucus barrier. Here, we prepared Ebola pseudovirus (with Zaire strain glycoproteins) and used high-resolution multiple-particle tracking to track the motions of hundreds of individual pseudoviruses in fresh and undiluted human airway mucus isolated from extubated endotracheal tubes. We found that Ebola pseudovirus readily penetrates human airway mucus. Addition of ZMapp, a cocktail of Ebola-binding immunoglobulin G antibodies, effectively reduced mobility of Ebola pseudovirus in the same mucus secretions. Topical delivery of ZMapp to the mouse airways also facilitated rapid elimination of Ebola pseudovirus. Our work demonstrates that antibodies can immobilize virions in airway mucus and reduce access to the airway epithelium, highlighting topical delivery of pathogen-specific antibodies to the lungs as a potential prophylactic or therapeutic approach against emerging viruses or biowarfare agents.


Assuntos
Anticorpos Monoclonais/farmacologia , Ebolavirus/fisiologia , Traqueia/virologia , Administração Tópica , Extubação/instrumentação , Animais , Células Cultivadas , Ebolavirus/efeitos dos fármacos , Ebolavirus/isolamento & purificação , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Contaminação de Equipamentos , Humanos , Camundongos , Traqueia/citologia , Traqueia/imunologia
11.
Acta Biomater ; 63: 181-189, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28870833

RESUMO

Pretargeting represents a promising strategy to enhance delivery of nanoparticles. The strategy involves first introducing bispecific antibodies or fusion proteins (BFP) that can bind specific epitopes on target cells with one arm, and use the other arm to capture subsequently administered effector molecules, such as radionuclides or drug-loaded nanoparticles. Nevertheless, it remains unclear whether BFP that bind slowly- or non-internalizing epitopes on target cells can facilitate efficient intracellular delivery. Here, we investigated the cellular uptake of biotin-functionalized nanoparticles with streptavidin-scFv against TAG-72, a membrane protein on Jurkat T-cell leukemia cells. Unlike conventional active-targeted nanoparticles, we found that pretargeting resulted in preferential retention of ∼100nm nanoparticles at the plasma membrane rather than internalization into cells. We found no improvement in nanoparticle internalization by simply reducing nanoparticle concentration or surface biotin density. Interestingly, by adding both the BFP and a monoclonal antibody against TAG-72, we observed a twofold improvement in internalization of pretargeted nanoparticles. Our work illustrates that the cellular fate of pretargeted nanoparticles can be controlled by carefully tuning the interactions between pretargeting molecules and nanoparticles on the cell surface. STATEMENT OF SIGNIFICANCE: Pretargeting is a multi-step strategy that utilizes bispecific proteins that recognize both cellular epitopes and subsequently administered therapeutic molecules. This approach has been extensively studied for radiotherapy of blood cancers; however, pretargeting remains largely underexplored for nanoparticle targeting, including whether pretargeting can facilitate efficient intracellular delivery. Here, we found that high density of targeting proteins on the cell surface can effectively limit internalization of pretargeted nanoparticles. Our work underscores the need to carefully assess specific cell-pretargeting molecule pairs for applications requiring intracellular delivery, and the key design requirements for such bispecific pretargeting molecules.


Assuntos
Biotina/metabolismo , Endocitose , Nanopartículas/química , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Estreptavidina/metabolismo , Anticorpos Biespecíficos/metabolismo , Biotinilação , Humanos , Células Jurkat
12.
J Control Release ; 255: 73-80, 2017 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-28363519

RESUMO

Tumor heterogeneity, which describes the genetically and phenotypically distinct subpopulations of tumor cells present within the same tumor or patient, presents a major challenge to targeted delivery of diagnostic and/or therapeutic agents. An ideal targeting strategy should deliver a given nanocarrier to the full diversity of cancer cells, which is difficult to achieve with conventional ligand-conjugated nanoparticles. We evaluated pretargeting (i.e., multistep targeting) as a strategy to facilitate nanoparticle delivery to multiple target cells by measuring the uptake of biotinylated nanoparticles by lymphoma cells with distinct surface antigens pretreated with different bispecific streptavidin-scFv fusion proteins. Fusion proteins targeting CD20 or tumor-associated glycoprotein 72 (TAG-72) mediated the specific in vitro uptake of 100nm biotin-functionalized nanoparticles by Raji and Jurkat lymphoma cells (CD20-positive and TAG-72-positive cells, respectively). Greater uptake was observed for pretargeted nanoparticles with increasing amounts of surface biotin, with 6- to 18-fold higher uptake vs. non-biotinylated nanoparticle and fusion protein controls. Fully biotin-modified particles remained resistant to cultured macrophage cell uptake, although they were still quickly cleared from systemic circulation in vivo (t1/2<1h). For single Raji tumor-bearing mice, pretargeting with CD20-specific FP significantly increased nanoparticle tumor targeting. In mice bearing both Raji and Jurkat tumors, pretargeting with both fusion proteins markedly increased nanoparticle targeting to both tumor types, compared to animals dosed with nanoparticles alone. These in vitro and in vivo observations support further evaluations of pretargeting fusion protein cocktails as a strategy to enhance nanoparticle delivery to a diverse array of molecularly distinct target cells.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Biotina/administração & dosagem , Nanopartículas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Poliestirenos/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Animais , Antígenos CD20/imunologia , Antígenos de Neoplasias/imunologia , Biotina/química , Biotina/farmacocinética , Linhagem Celular Tumoral , Feminino , Glicoproteínas/imunologia , Camundongos Endogâmicos BALB C , Nanopartículas/química , Neoplasias/metabolismo , Fagocitose , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Poliestirenos/química , Poliestirenos/farmacocinética , Distribuição Tecidual
13.
Methods Mol Biol ; 1530: 125-137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28150200

RESUMO

Poly(ethylene glycol) (PEG) coatings can substantially reduce nanoparticle uptake and clearance by immune cells as well as nonspecific interactions with the biological environment, thus potentially improving nanoparticle circulation times and biodistribution in target tissues such as tumors. Naturally, the "stealth" properties of PEG coatings are critically dependent on the density and conformation of surface PEG chains. However, there are significant technical hurdles to both generating sufficiently dense PEG coatings on nanoparticles and precisely characterizing their PEG grafting densities. Here, we describe methods for preparing PEGylated polymeric nanoparticles with precisely tunable PEG coatings without the use of organic solvents, quantifying PEGylation efficiency and density using a standard fluorescence assay, and evaluating nanoparticle uptake by immune cells using flow cytometry.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas , Polietilenoglicóis , Linhagem Celular , Portadores de Fármacos/química , Humanos , Macrófagos/metabolismo , Nanopartículas/química , Polietilenoglicóis/química , Espectrometria de Fluorescência
14.
ACS Biomater Sci Eng ; 3(8): 1605-1615, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33429646

RESUMO

Polyethylene glycol (PEG), a flexible and relatively hydrophilic polymer, is widely used not only in medicine but also in numerous everyday hygiene, food, and skincare products. Recent animal and human studies have shown that antibodies (Abs) that bind PEG can be induced, leading to markedly reduced therapeutic efficacy of PEGylated therapeutics as well as possibly resulting in acute anaphylaxis and hypersensitivity reactions. Because humans are exposed to numerous other synthetic polymers, we sought to investigate whether such "anti-PEG" antibodies may also bind other synthetic polymers, particularly those with structural similarities to PEG. In a screen of six commercially available and two recombinantly produced anti-PEG IgG and IgM antibodies, we found five antibodies (3 IgG and 2 IgM) that readily bind polypropylene glycol (PPG), polytetramethylene ether glycol (PTMEG), and poly-1,4-butylene adipate (PBA). In contrast, none of the eight antibodies bound dextran (DEX) or polyepoxysuccinic acid (PES), and only two exhibited detectable affinity to polyethylenimine (PEI), suggesting that these PEG-binding antibodies likely possibly recognizable accessible C-C-O groups in the polymer backbone. We also observed similar cross-reactivity in plasma of human subjects with high titers of PEG-binding IgG and IgM. These results directly demonstrate potential cross-reactivity of select PEG-binding antibodies, which represents a new category of antidrug antibodies whereby an adverse immune response can be elicited as a result of prior exposures to PEG or other synthetic PEG-like polymers.

15.
ACS Nano ; 10(10): 9243-9258, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27666558

RESUMO

The binding site barrier (BSB) was originally proposed to describe the binding behavior of antibodies to cells peripheral to blood vessels, preventing their further penetration into the tumors. Yet, it is revisited herein to describe the intratumoral cellular disposition of nanoparticles (NPs). Specifically, the BSB limits NP diffusion and results in unintended internalization of NPs by stroma cells localized near blood vessels. This not only limits the therapeutic outcome but also promotes adverse off-target effects. In the current study, it was shown that tumor-associated fibroblast cells (TAFs) are the major component of the BSB, particularly in tumors with a stroma-vessel architecture where the location of TAFs aligns with blood vessels. Specifically, TAF distance to blood vessels, expression of receptor proteins, and binding affinity affect the intensity of the BSB. The physical barrier elicited by extracellular matrix also prolongs the retention of NPs in the stroma, potentially contributing to the BSB. The influence of particle size on the BSB was also investigated. The strongest BSB effect was found with small (∼18 nm) NPs targeted with the anisamide ligand. The uptake of these NPs by TAFs was about 7-fold higher than that of the other cells 16 h post-intravenous injection. This was because TAFs also expressed the sigma receptor under the influence of TGF-ß secreted by the tumor cells. Overall, the current study underscores the importance of BSBs in the delivery of nanotherapeutics and provides a rationale for exploiting BSBs to target TAFs.

16.
PLoS One ; 11(6): e0158338, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362256

RESUMO

Human cervicovaginal mucus (CVM) is a viscoelastic gel containing a complex mixture of mucins, shed epithelial cells, microbes and macromolecules, such as antibodies, that together serve as the first line of defense against invading pathogens. Here, to investigate the affinity between IgG and different mucus constituents, we used Fluorescence Recovery After Photobleaching (FRAP) to measure the diffusion of IgG in fresh, minimally modified CVM. We found that CVM exhibits substantial spatial variations that necessitate careful selection of the regions in which to perform FRAP. In portions of CVM devoid of cells, FRAP measurements using different IgG antibodies and labeling methods consistently demonstrate that both exogenous and endogenous IgG undergo rapid diffusion, almost as fast as in saline, in good agreement with the rapid diffusion of IgG in mid-cycle endocervical mucus that is largely devoid of cells. This rapid diffusion indicates the interactions between secreted mucins and IgG must be very weak and transient. IgG also accumulated in cellular debris and shed epithelial cells that had become permeable to IgG, which may allow shed epithelial cells to serve as reservoirs of secreted IgG. Interestingly, in contrast to cell-free regions of CVM, the diffusion of cell-associated IgG was markedly slowed, suggesting greater affinity between IgG and cellular constituents. Our findings contribute to an improved understanding of the role of IgG in mucosal protection against infectious diseases, and may also provide a framework for using FRAP to study molecular interactions in mucus and other complex biological environments.


Assuntos
Muco do Colo Uterino/imunologia , Células Epiteliais/imunologia , Imunoglobulina G/metabolismo , Transporte Biológico , Sistema Livre de Células , Muco do Colo Uterino/citologia , Células Epiteliais/citologia , Feminino , Recuperação de Fluorescência Após Fotodegradação , Humanos , Vagina/citologia , Vagina/imunologia
17.
J Control Release ; 220(Pt B): 715-26, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26407672

RESUMO

Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partially suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors. Pretargeting (multistep targeting) approaches involving the administration of 1) a cocktail of bispecific proteins that can collectively bind to the entirety of a mixed tumor population followed by 2) nanoparticles containing therapeutic and/or diagnostic agents that can bind to the bispecific proteins accumulated on the surface of target cells offer the potential to overcome many of the challenges associated with drug delivery to heterogeneous tumors. Despite its considerable success in improving the efficacy of radioimmunotherapy, the pretargeting strategy remains underexplored for a majority of nanoparticle therapeutic applications, especially for targeted delivery to heterogeneous tumors. In this review, we will present concepts in tumor heterogeneity, the shortcomings of conventional targeted systems, lessons learned from pretargeted radioimmunotherapy, and important considerations for harnessing the pretargeting strategy to improve nanoparticle delivery to heterogeneous tumors.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Nanomedicina/métodos , Nanopartículas , Neoplasias/tratamento farmacológico , Proteínas/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Biomarcadores Tumorais/metabolismo , Química Farmacêutica , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Proteínas/química , Radioimunoterapia/métodos
18.
PLoS One ; 10(7): e0131351, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132216

RESUMO

Secretory immunoglobulin A (sIgA), a dimeric antibody found in high quantities in the gastrointestinal mucosa, is broadly associated with mucosal immune protection. A distinguishing feature of sIgA is its ability to crosslink pathogens, thereby creating pathogen/sIgA aggregates that are too large to traverse the dense matrix of mucin fibers in mucus layers overlying epithelial cells and consequently reducing infectivity. Here, we use modeling to investigate this mechanism of "immune exclusion" based on sIgA-mediated agglutination, in particular the potential use of sIgA to agglutinate HIV in cervicovaginal mucus (CVM) and prevent HIV transmission. Utilizing reported data on HIV diffusion in CVM and semen, we simulate HIV collision kinetics in physiologically-thick mucus layers-a necessary first step for sIgA-induced aggregation. We find that even at the median HIV load in semen of acutely infected individuals possessing high viral titers, over 99% of HIV virions will penetrate CVM and reach the vaginal epithelium without colliding with another virion. These findings imply that agglutination is unlikely to be the dominant mechanism of sIgA-mediated protection against HIV or other sexually transmitted pathogens. Rather, we surmise that agglutination is most effective against pathogens either present at exceedingly high concentrations or that possess motility mechanisms other than Brownian diffusion that significantly enhance encounter rates.


Assuntos
Colo do Útero/virologia , HIV/fisiologia , Imunoglobulina A Secretora/fisiologia , Muco/virologia , Vagina/virologia , Vírion/fisiologia , Aglutinação/imunologia , Aglutinação/fisiologia , Colo do Útero/imunologia , Colo do Útero/fisiologia , Feminino , HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/transmissão , Humanos , Modelos Biológicos , Muco/imunologia , Muco/fisiologia , Sêmen/virologia , Vagina/imunologia , Vagina/fisiologia , Carga Viral/imunologia , Carga Viral/fisiologia
19.
Drug Deliv Transl Res ; 4(2): 203-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24816829

RESUMO

Intraperitoneal (IP) chemotherapy is more effective than systemic chemotherapy for treating advanced ovarian cancer, but is typically associated with severe complications due to high dose, frequent administration schedule, and use of non-biocompatible excipients/delivery vehicles. Here, we developed paclitaxel (PTX)-loaded microspheres composed of di-block copolymers of poly(ethylene glycol) and poly(sebacic acid) (PEG-PSA) for safe and sustained IP chemotherapy. PEG-PSA microspheres provided efficient loading (~ 13% w/w) and prolonged release (~ 13 days) of PTX. In a murine ovarian cancer model, a single dose of IP PTX/PEG-PSA particles effectively suppressed tumor growth for more than 40 days and extended the median survival time to 75 days compared to treatments with Taxol(®) (47 days) or IP placebo particles (34 days). IP PTX/PEG-PSA was well tolerated, with only minimal to mild inflammation. Our findings support PTX/PEG-PSA microspheres as a promising drug delivery platform for IP therapy of ovarian cancer, and potentially other metastatic peritoneal cancers.

20.
Mol Pharm ; 11(4): 1250-8, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24521246

RESUMO

Coating nanoparticles with polyethylene glycol (PEG), which reduces particle uptake and clearance by immune cells, is routinely used to extend the circulation times of nanoparticle therapeutics. Nevertheless, due to technical hurdles in quantifying the extent of PEG grafting, as well as in generating very dense PEG coatings, few studies have rigorously explored the precise PEG grafting density necessary to achieve desirable "stealth" properties. Here, using polymeric nanoparticles with precisely tunable PEG grafting, we found that, for a wide range of PEG lengths (0.6-20 kDa), PEG coatings at densities substantially exceeding those required for PEG to adopt a "brush" conformation are exceptionally resistant to uptake by cultured human macrophages, as well as primary peripheral blood leukocytes. Less than 20% of these nanoparticles were cleared from the blood after 2 h (t1/2 ∼ 14 h) in BALB/c mice, whereas slightly less densely PEGylated and uncoated control particles were both virtually eliminated within 2 h. Our results suggest that the stealth properties of PEG-coated nanoparticles are critically dependent on achieving PEG grafting at densities exceeding those required for brush conformation.


Assuntos
Sistemas de Liberação de Medicamentos , Leucócitos/imunologia , Nanopartículas/química , Polietilenoglicóis/química , Animais , Células Cultivadas , Feminino , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA