Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 143: 213-223, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644018

RESUMO

Chemical modifications of proteins induced by ambient ozone (O3) and nitrogen oxides (NOx) are of public health concerns due to their potential to trigger respiratory diseases. The laboratory and environmental exposure systems have been widely used to investigate their relevant mechanism in the atmosphere. Using bovine serum albumin (BSA) as a model protein, we evaluated the two systems and aimed to reduce the uncertainties of both the reactants and products in the corresponding kinetic study. In the laboratory simulation system, the generated gaseous pollutants showed negligible losses. Ten layers of BSA were coated on the flow tube with protein extraction recovery of 87.4%. For environmental exposure experiment, quartz fiber filter was selected as the upper filter with low gaseous O3 (8.0%) and NO2 (1.7%) losses, and cellulose acetate filter was appropriate for the lower filter with protein extraction efficiency of 95.2%. The protein degradation process was observed without the exposure to atmospheric oxidants and contributed to the loss of protein monomer mass fractions, while environmental factors (e.g., molecular oxygen and ultraviolet) may cause greater protein monomer losses. Based on the evaluation, the study exemplarily applied the two systems to protein modification and both showed that O3 promotes the protein oligomerization and nitration, while increased temperature can accelerate the oligomerization and increased relative humidity can inhibit the nitration in the environmental exposure samples. The developed laboratory and environmental systems are suitable for studying protein modifications formed under different atmospheric conditions. A combination of the two will further reveal the actual mechanism of protein modifications.


Assuntos
Poluentes Atmosféricos , Ozônio , Ozônio/química , Poluentes Atmosféricos/análise , Soroalbumina Bovina/química , Exposição Ambiental , Óxidos de Nitrogênio/análise , Proteínas/química
2.
Sci Total Environ ; 924: 171617, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38467257

RESUMO

Proteins in atmospheric aerosol can react with atmospheric pollutants such as ozone (O3) and nitrogen dioxide (NO2) in the atmosphere via the reactions of oxidation, nitration, and cross-linking etc. Currently, the reactions have been more thoroughly studied in the laboratory but rarely investigated in the ambient environment. In this study, we used bovine serum albumin (BSA) as the model protein to conduct the exposure experiment in the ambient environment in southern China, an area with increasing oxidative capacity, to investigate the reactions of proteins in the atmosphere. We observed the occurrence of oligomerization, nitration and degradation of BSA upon exposure. The mass fraction of BSA monomer decreased by 5.86 ± 1.61% after exposure and those of dimers, trimers and higher oligomers increased by 1.04 ± 0.49%, 1.37 ± 0.74% and 3.40 ± 1.06%, respectively. Simultaneously, the nitration degrees of monomers, dimers, trimers and higher oligomers increased by 0.42 ± 0.15%, 0.53 ± 0.15%, 0.55 ± 0.28% and 2.15 ± 1.01%, respectively. The results show that oligomerization was significantly affected by O3 and temperature and nitration was jointly affected by O3, temperature and relative humidity, indicating the important role of atmospheric oxidants in the atmospheric reactions of protein. Atmospheric degradation of BSA was observed with the release of free amino acids (FAAs) such as glycine, alanine, serine and methionine. Glycine was the dominant FAA with a molar yield ranging from ∼8% to 33% for BSA. The estimated stoichiometric coefficient (α) of glycine is 10-7-10-6 for the degradation of BSA upon O3. Our observation suggests the occurrence of protein reactions in the oxidative ambient environment, leading to the production of nitrated products, oligomers and low molecular weight products such as peptides and FAAs. This study may deepen the current understanding of the atmospheric reaction mechanisms and reveal the influence of environmental factors in the atmosphere.


Assuntos
Poluentes Atmosféricos , Ozônio , Soroalbumina Bovina/química , Peptídeos , Aminoácidos , Poluentes Atmosféricos/química , Glicina , Ozônio/química
3.
Sci Total Environ ; 895: 165111, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364838

RESUMO

Residential indoor PM2.5 were concurrently collected in Hong Kong, Guangzhou, Shanghai, and Xi'an during the winter and early spring seasons of 2016-2017, for updating the current knowledge of the spatial variation of indoor air pollution and the potential health risks in China. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) were characterized, and the associated inhalation cancer risks were assessed by a probabilistic approach. Higher levels of indoor PAHs were identified in Xi'an residences (averaged at 176.27 ng m-3) with those of other cities ranging from 3.07 to 15.85 ng m-3. Traffic-related fuel combustion was identified as a common contributor to indoor PAHs through outdoor infiltration for all investigated cities. Indoor PAHs profiles showed city-specific differences, while distinctions between profiles based on indoor activities or ambient air quality were limited. Similar with the total PAHs concentrations, the estimated toxic equivalencies (TEQ) with reference to benzo[a]pyrene in Xi'an residences (median at 18.05 ng m-3) were above the recommended value of 1 ng m-3 and were magnitudes higher than the other investigated cities with estimated median TEQ ranging from 0.27 to 1.55 ng m-3. Incremental lifetime cancer risk (ILCR) due to PAHs inhalation exposure was identified with a descending order of adult (median at 8.42 × 10-8) > adolescent (2.77 × 10-8) > children (2.20 × 10-8) > senior (1.72 × 10-8) for different age groups. Considering the lifetime exposure-associated cancer risk (LCR), potential risks were identified for residents in Xi'an as an LCR level over 1 × 10-6 was identified for half of the adolescent group (median at 8.96 × 10-7), and exceedances were identified for about 90 % of the groups of adults (10th percentile at 8.29 × 10-7) and seniors (10th percentile at 1.02 × 10-6). The associated LCR estimated for other cities were relatively insignificant.


Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Adolescente , Criança , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Estações do Ano , Cidades , China , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Monitoramento Ambiental
4.
Sci Total Environ ; 739: 139684, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32554114

RESUMO

There is increasing public attention on exposure to PM2.5 and its related health impacts. It is essential to study the pollution levels, sources, and health implications of indoor PM2.5, especially for residential homes, as people tend to spend most of their time indoors. The indoor PM2.5 mass and organic/elemental carbon (OC/EC) during winter and early spring period of 2016-2017 at 68 residential households in four large Chinese cities (i.e. Hong Kong, Guangzhou, Shanghai, and Xi'an) were studied. Average indoor PM2.5 varied by two-fold, lowest in Hong Kong (34.0 ± 14.6 µg m-3) and highest in Xi'an (78.7 ± 49.3 µg m-3), with comparable levels for Guangzhou (47.2 ± 5.4 µg m-3) and Shanghai (50.3 ± 17.9 µg m-3). Lowest air exchange rate (AER, 0.8 ± 0.8 h-1) and PM2.5 indoor/outdoor (I/O) ratio (0.72 ± 0.23) were found for Xi'an households, indicating the limited influence from indoor sources, while importance of indoor PM2.5 sources is signified with the highest PM2.5 I/O ratio (1.32 ± 0.43) identified for Shanghai households. For households in four cities, OC and EC accounted for 29.5%-38.5% and 7.5%-8.9% of the indoor PM2.5 mass, indicating the significance of carbonaceous aerosols. Larger differences between indoor and outdoor OC (2.6-8.4%) than EC (-2.2-1.5%) indicate the presence of indoor OC sources. Decreasing trends of PM2.5 I/O ratio and indoor OC proportion were found as the worsening ambient air quality. On average, 11.8 µg m-3 (23.1%) and 3.02 µg m-3 (18.7%) higher indoor PM2.5 and OC concentrations were identified for households with other indoor combustions (e.g., tobacco smoking, incense burning) compared to those with only cooking activities. For Hong Kong and Shanghai households, increments of 13.2 µg m-3 (54.1%) of PM2.5 and 4.1 µg m-3 (45.4%) of OC were found at households with cooking activities as compared to households with no specific indoor combustion.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Aerossóis/análise , Carbono/análise , China , Cidades , Monitoramento Ambiental , Hong Kong , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
5.
Environ Sci Technol ; 53(13): 7380-7390, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31117537

RESUMO

Aerosol proteinaceous matter is comprised of a substantial fraction of bioaerosols. Its origins and interactions in the atmosphere remain poorly understood. We present observations of total proteins, combined, and free amino acids (CAAs and FAAs) in fine particulate matter (PM2.5) samples in urban Beijing before and during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. The decreases in proteins, CAAs and FAAs levels were observed after the implementation of restrictive emission controls. Significant changes were observed for the composition profiles in FAAs with the predominance of valine before the APEC and glycine during the APEC, respectively. These variations could be attributed to the influence of sources, atmospheric processes, and meteorological conditions. FAAs (especially valine and glycine) were suggested to be released by the degradation of high molecular weight proteins/polypeptides by atmospheric oxidants (i.e., ozone and free radicals) and nitrogen dioxide. Besides daytime reactions, nighttime chemistry was found to play an important role in the atmospheric formation of valine during the nights, suggesting the possible influence of NO3 radicals. Our findings provide new insights into the significant impacts of atmospheric oxidation capacity on the occurrence and transformation of aerosol proteinaceous matter which may affect its environmental, climate and health effects.


Assuntos
Poluentes Atmosféricos , Aerossóis , Ásia , Pequim , Monitoramento Ambiental , Material Particulado
6.
Anal Bioanal Chem ; 409(9): 2411-2420, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28108753

RESUMO

Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.


Assuntos
Aminoácidos/química , Radical Hidroxila/química , Peptídeos/química , Proteínas/química , Oxirredução , Espécies Reativas de Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA