Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 36(4): 822-838.e8, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38350448

RESUMO

Immunomodulatory effects of long-chain fatty acids (LCFAs) and their activating enzyme, acyl-coenzyme A (CoA) synthetase long-chain family (ACSL), in the tumor microenvironment remain largely unknown. Here, we find that ACSL5 functions as an immune-dependent tumor suppressor. ACSL5 expression sensitizes tumors to PD-1 blockade therapy in vivo and the cytotoxicity mediated by CD8+ T cells in vitro via regulation of major histocompatibility complex class I (MHC-I)-mediated antigen presentation. Through screening potential substrates for ACSL5, we further identify that elaidic acid (EA), a trans LCFA that has long been considered harmful to human health, phenocopies to enhance MHC-I expression. EA supplementation can suppress tumor growth and sensitize PD-1 blockade therapy. Clinically, ACSL5 expression is positively associated with improved survival in patients with lung cancer, and plasma EA level is also predictive for immunotherapy efficiency. Our findings provide a foundation for enhancing immunotherapy through either targeting ACSL5 or metabolic reprogramming of antigen presentation via dietary EA supplementation.


Assuntos
Apresentação de Antígeno , Neoplasias , Ácidos Oleicos , Humanos , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1 , Suplementos Nutricionais , Microambiente Tumoral , Coenzima A Ligases/metabolismo
2.
Nat Commun ; 14(1): 4758, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553341

RESUMO

Dietary methionine interventions are beneficial to apoptosis-inducing chemotherapy and radiotherapy for cancer, while their effects on ferroptosis-targeting therapy and immunotherapy are unknown. Here we show the length of time methionine deprivation affects tumoral ferroptosis differently. Prolonged methionine deprivation prevents glutathione (GSH) depletion from exceeding the death threshold by blocking cation transport regulator homolog 1 (CHAC1) protein synthesis. Whereas, short-term methionine starvation accelerates ferroptosis by stimulating CHAC1 transcription. In vivo, dietary methionine with intermittent but not sustained deprivation augments tumoral ferroptosis. Intermittent methionine deprivation also sensitizes tumor cells against CD8+ T cell-mediated cytotoxicity and synergize checkpoint blockade therapy by CHAC1 upregulation. Clinically, tumor CHAC1 correlates with clinical benefits and improved survival in cancer patients treated with checkpoint blockades. Lastly, the triple combination of methionine intermittent deprivation, system xc- inhibitor and PD-1 blockade shows superior antitumor efficacy. Thus, intermittent methionine deprivation is a promising regimen to target ferroptosis and augment cancer immunotherapy.


Assuntos
Ferroptose , Humanos , Metionina/farmacologia , Apoptose , Racemetionina/farmacologia , Imunoterapia , Linhagem Celular Tumoral
3.
Int J Immunopathol Pharmacol ; 32: 2058738418780593, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29877106

RESUMO

Chronic pharyngitis is characterized as a common inflammation of the pharyngeal mucosa, and anti-inflammatory medications are the common treatment to relieve it. Polysacharides of Citrus grandis L. Osbeck (PCG) and luteolin have been reported to have anti-inflammatory activities. In this study, the protective effects of PCG and luteolin on chronic pharyngitis are evaluated and the underlying mechanisms are explored. PCG and luteolin are administrated to animal models with granuloma, ear edema and chronic pharyngitis and the effects of PCG and luteolin on disease severity are evaluated. We also evaluate the effects of PCG and luteolin on inflammatory cytokine production in macrophages stimulated with lipopolysaccharides (LPS)/interferon-gamma (IFN-γ) and detect the effects of PCG and luteolin on macrophage polarization. Finally, we evaluate the effects of PCG and luteolin on activations of LPS-induced downstream signaling pathways. PCG and luteolin alleviate the disease severity of granuloma, ear edema and chronic pharyngitis. PCG and luteolin suppress the productions of pro-inflammatory cytokines interlukin-6 (IL-6), interlukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α) in macrophages. Luteolin promotes macrophage M2 polarization by enhancing expressions of arginase (Arg1) and mannose receptor C type 1 (Mrc1). PCG and luteolin suppress nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and interferon regulatory factor 1 (IRF1), interferon regulatory factor 5 (IRF5) expression. PCG together with luteolin relieves chronic pharyngitis by anti-inflammatory via suppressing NF-κB pathway and the polarization of M1 macrophage.


Assuntos
Anti-Inflamatórios/uso terapêutico , Citrus/química , Luteolina/uso terapêutico , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Faringite/tratamento farmacológico , Polissacarídeos/uso terapêutico , Animais , Anti-Inflamatórios/administração & dosagem , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/imunologia , Granuloma/tratamento farmacológico , Granuloma/imunologia , Luteolina/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Faringite/imunologia , Polissacarídeos/administração & dosagem , Polissacarídeos/isolamento & purificação , Coelhos , Ratos Wistar , Mucosa Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA