Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38462014

RESUMO

PURPOSE: Novel radiation therapy approaches have increased the therapeutic efficacy for malignant brain tumors over the past decades, but the balance between therapeutic gain and radiotoxicity remains a medical hardship. Synchrotron microbeam radiation therapy, an innovative technique, deposes extremely high (peak) doses in micron-wide, parallel microbeam paths, whereas the diffusing interbeam (valley) doses lie in the range of conventional radiation therapy doses. In this study, we evaluated normal tissue toxicity of whole-brain microbeam irradiation (MBI) versus that of a conventional hospital broad beam (hBB). METHODS AND MATERIALS: Normal Fischer rats (n = 6-7/group) were irradiated with one of the two modalities, exposing the entire brain to MBI valley/peak doses of 0/0, 5/200, 10/400, 13/520, 17/680, or 25/1000 Gy or to hBB doses of 7, 10, 13, 17, or 25 Gy. Two additional groups of rats received an MBI valley dose of 10 Gy coupled with an hBB dose of 7 or 15 Gy (groups MBI17* and MBI25*). Behavioral parameters were evaluated for 10 months after irradiation combined with veterinary observations. RESULTS: MBI peak doses of ≥680 Gy caused acute toxicity and death. Animals exposed to hBB or MBI dose-dependently gained less weight than controls; rats in the hBB25 and MBI25* groups died within 6 months after irradiation. Increasing doses of MBI caused hyperactivity but no other detectable behavioral alterations in our tests. Importantly, no health concerns were seen up to an MBI valley dose of 17 Gy. CONCLUSIONS: While acute toxicity of microbeam exposures depends on very high peak doses, late toxicity mainly relates to delivery of high MBI valley doses. MBI seems to have a low impact on normal rat behavior, but further tests are warranted to fully explore this hypothesis. However, high peak and valley doses are well tolerated from a veterinary point of view. This normal tissue tolerance to whole-brain, high-dose MBI reveals a promising avenue for microbeam radiation therapy, that is, therapeutic applications of microbeams that are poised for translation to a clinical environment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38373658

RESUMO

PURPOSE: Synchrotron microbeam radiation therapy (MRT), based on an inhomogeneous geometric and microscopic irradiation pattern of the tissues with high-dose and high-dose-rate x-rays, enhances the permeability of brain tumor vessels. This study attempted to determine the time and size range of the permeability window induced by MRT in the blood-brain (tumor) barrier. METHODS AND MATERIALS: Rats-bearing 9L gliomas were exposed to MRT, either unidirectional (tumor dose, 406 Gy) or bidirectional (crossfired) (2 × 203 Gy). We measured vessel permeability to molecules of 3 sizes (Gd-DOTA, Dotarem, 0.56 kDa; gadolinium-labeled albumin, ∼74 kDa; and gadolinium-labeled IgG, 160 kDa) by daily in vivo magnetic resonance imaging, from 1 day before to 10 days after irradiation. RESULTS: An equivalent tumor dose of bidirectional MRT delivered from 2 orthogonal directions increased tumor vessel permeability for the smallest molecule tested more effectively than unidirectional MRT. Bidirectional MRT also affected the permeability of normal contralateral vessels to a different extent than unidirectional MRT. Conversely, bidirectional MRT did not modify the permeability of normal or tumor vessels for both larger molecules (74 and 160 kDa). CONCLUSIONS: High-dose bidirectional (cross-fired) MRT induced a significant increase in tumor vessel permeability for small molecules between the first and the seventh day after irradiation, whereas permeability of vessels in normal brain tissue remained stable. Such a permeability window could facilitate an efficient and safe delivery of intravenous small molecules (≤0.56 kDa) to tumoral tissues. A permeability window was not achieved by molecules larger than gado-grafted albumin (74 kDa). Vascular permeability for molecules between these 2 sizes has not been determined.

3.
Cancers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497446

RESUMO

Monoplanar microbeam irradiation (MBI) and pencilbeam irradiation (PBI) are two new concepts of high dose rate radiotherapy, combined with spatial dose fractionation at the micrometre range. In a small animal model, we have explored the concept of integrating MBI or PBI as a simultaneously integrated boost (SIB), either at the beginning or at the end of a conventional, low-dose rate schedule of 5x4 Gy broad beam (BB) whole brain radiotherapy (WBRT). MBI was administered as array of 50 µm wide, quasi-parallel microbeams. For PBI, the target was covered with an array of 50 µm × 50 µm pencilbeams. In both techniques, the centre-to-centre distance was 400 µm. To assure that the entire brain received a dose of at least 4 Gy in all irradiated animals, the peak doses were calculated based on the daily BB fraction to approximate the valley dose. The results of our study have shown that the sequence of the BB irradiation fractions and the microbeam SIB is important to limit the risk of acute adverse effects, including epileptic seizures and death. The microbeam SIB should be integrated early rather than late in the irradiation schedule.

4.
Int J Radiat Oncol Biol Phys ; 113(5): 967-973, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483539

RESUMO

PURPOSE: The high potential of microbeam radiation therapy (MRT) in improving tumor control while reducing side effects has been shown by numerous preclinical studies. MRT offers a widened therapeutic window by using the periodical spatial fractionation of synchrotron generated x-rays into an array of intense parallel microbeams. MRT now enters a clinical transfer phase. As proof of principle and cornerstone for the safe clinical transfer of MRT, we conducted a "first in dog" trial under clinical conditions. In this report, we evaluated whether a 3-dimensional conformal MRT can be safely delivered as exclusive radiosurgical treatment in animal patients METHODS AND MATERIALS: We irradiated a 17.5-kg French bulldog for a spontaneous brain tumor (glioma suspected on magnetic resonance imaging) with conformal high-dose-rate microbeam arrays (50-µm-wide microbeams, replicated with a pitch of 400 µm) of synchrotron-generated x-rays. The dose prescription adjusted a minimal cumulated valley dose of 2.8 Gy to the plnning target volume (PTV) (cinical target volume (CTV)+ 1 mm). Thus, each beam delivered 20 to 25 Gy to the target as peak doses, and ∼1 Gy as valley doses RESULTS: The treatment was successfully delivered. Clinical follow-up over 3 months showed a significant improvement of the dog's quality of life: the symptoms disappeared. Magnetic resonance imaging, performed 3 months after irradiation, revealed reduction in tumor size (-87.4%) and mass effect with normalization of the left lateral ventricle. CONCLUSIONS: To our knowledge, this neuro-oncologic veterinary trial is the first 3-dimensional conformal synchrotron x-ray MRT treatment of a spontaneous intracranial tumor in a large animal. It is an essential last step toward the clinical transfer of MRT in the near future to demonstrate the feasibility and safety of treating deep-seated tumors using synchrotron-generated microbeams.


Assuntos
Neoplasias Encefálicas , Glioma , Radiocirurgia , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/veterinária , Cães , Glioma/diagnóstico por imagem , Glioma/patologia , Glioma/radioterapia , Qualidade de Vida , Radiocirurgia/métodos , Síncrotrons
5.
Int J Radiat Oncol Biol Phys ; 112(3): 818-830, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678432

RESUMO

PURPOSE: This study provides the first experimental application of multiscale 3-dimensional (3D) x-ray phase contrast imaging computed tomography (XPCI-CT) virtual histology for the inspection and quantitative assessment of the late-stage effects of radio-induced lesions on lungs in a small animal model. METHODS AND MATERIALS: Healthy male Fischer rats were irradiated with x-ray standard broad beams and microbeam radiation therapy, a high-dose rate (14 kGy/s), FLASH spatially fractionated x-ray therapy to avoid beamlet smearing owing to cardiosynchronous movements of the organs during the irradiation. After organ dissection, ex vivo XPCI-CT was applied to all the samples and the results were quantitatively analyzed and correlated to histologic data. RESULTS: XPCI-CT enables the 3D visualization of lung tissues with unprecedented contrast and sensitivity, allowing alveoli, vessel, and bronchi hierarchical visualization. XPCI-CT discriminates in 3D radio-induced lesions such as fibrotic scars and Ca/Fe deposits and allows full-organ accurate quantification of the fibrotic tissue within the irradiated organs. The radiation-induced fibrotic tissue content is less than 10% of the analyzed volume for all microbeam radiation therapy-treated organs and reaches 34% in the case of irradiations with 50 Gy using a broad beam. CONCLUSIONS: XPCI-CT is an effective imaging technique able to provide detailed 3D information for the assessment of lung pathology and treatment efficacy in a small animal model.


Assuntos
Terapia por Raios X , Animais , Pulmão/diagnóstico por imagem , Masculino , Ratos , Tomografia Computadorizada por Raios X/métodos , Raios X
6.
Radiat Res ; 197(3): 233-241, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755190

RESUMO

Microbeam radiation therapy, an alternative radiosurgical treatment under preclinical investigation, aims to safely treat muzzle tumors in pet animals. This will require data on the largely unknown radiation toxicity of microbeam arrays for bones and teeth. To this end, the muzzle of six young adult New Zealand rabbits was irradiated by a lateral array of microplanar beamlets with peak entrance doses of 200, 330 or 500 Gy. The muzzles were examined 431 days postirradiation by computed microtomographic imaging (micro-CT) ex vivo, and extensive histopathology. The boundaries of the radiation field were identified histologically by microbeam tracks in cartilage and other tissues. There was no radionecrosis of facial bones in any rabbit. Conversely, normal incisor teeth exposed to peak entrance doses of 330 Gy or 500 Gy developed marked caries-like damage, whereas the incisors of the two rabbits exposed to 200 Gy remained unscathed. A single, unidirectional array of microbeams with a peak entrance dose ≤200 Gy (valley dose14 Gy) did not damage normal bone, teeth and soft tissues of the muzzle of normal rabbits longer than one year after irradiation. Because of that, Microbeam radiation therapy of muzzle tumors in pet animals is unlikely to cause sizeable damage to normal teeth, bone and soft tissues, if a single array as used here delivers a limited entrance dose of 200 Gy and a valley dose of ≤14 Gy.


Assuntos
Neoplasias , Lesões por Radiação , Radiocirurgia , Animais , Ossos Faciais , Coelhos , Síncrotrons , Raios X
7.
Cureus ; 13(11): e19317, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35223216

RESUMO

Conventional radiotherapy is a widely used non-invasive form of treatment for many types of cancer. However, due to a low threshold in the lung for radiation-induced normal tissue damage, it is of less utility in treating lung cancer. For this reason, surgery is the preferred treatment for lung cancer, which has the detriment of being highly invasive. Non-conventional ultra-high dose rate (FLASH) radiotherapy is currently of great interest in the radiotherapy community due to demonstrations of reduced normal tissue toxicity in lung and other anatomy. This study investigates the effects of FLASH microbeam radiotherapy, which in addition to ultra-high dose rate incorporates a spatial segmentation of the radiation field, on the normal lung tissue of rats. With a focus on fibrotic damage, this work demonstrates that FLASH microbeam radiotherapy provides an order of magnitude increase in normal tissue radio-resistance compared to FLASH radiotherapy. This result suggests FLASH microbeam radiotherapy holds promise for much improved non-invasive control of lung cancer.

8.
Sci Rep ; 6: 33601, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27640676

RESUMO

Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25-100 µm wide) and minibeams (200-800 µm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a(+) thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool.


Assuntos
Plaquetas/efeitos da radiação , Vasos Sanguíneos/patologia , Infiltração de Neutrófilos/efeitos da radiação , Adesividade Plaquetária/efeitos da radiação , Síncrotrons , Nadadeiras de Animais/irrigação sanguínea , Nadadeiras de Animais/efeitos da radiação , Nadadeiras de Animais/ultraestrutura , Animais , Tecido Conjuntivo/patologia , Hemostasia , Inflamação/patologia , Perfusão , Peixe-Zebra
9.
Health Phys ; 111(2): 149-59, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27356059

RESUMO

Out-of-field effects are of considerable interest in radiotherapy. The mechanisms are poorly understood but are thought to involve signaling processes, which induce responses in non-targeted cells and tissues. The immune response is thought to play a role. The goal of this research was to study the induction of abscopal effects in the bladders of NU-Foxn1 mice after irradiating their brains using Pencil Beam (PB) or microbeam (MRT) irradiation at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Athymic nude mice injected with F98 glioma cells into their right cerebral hemisphere 7 d earlier were treated with either MRT or PB. After recovery times of 2, 12, and 48 h, the urinary bladders were extracted and cultured as tissue explants for 24 h. The growth medium containing the potential signaling factors was harvested, filtered, and transferred to HaCaT reporter cells to assess their clonogenic survival and calcium signaling potential. The results show that in the tumor-free mice, both treatment modalities produce strong bystander/abscopal signals using the clonogenic reporter assay; however, the calcium data do not support a calcium channel mediated mechanism. The presence of a tumor reduces or reverses the effect. PB produced significantly stronger effects in the bladders of tumor-bearing animals. The authors conclude that immunocompromised mice produce signals, which can alter the response of unirradiated reporter cells; however, a novel mechanism appears to be involved.


Assuntos
Neoplasias Encefálicas/radioterapia , Efeito Espectador/imunologia , Hospedeiro Imunocomprometido/efeitos da radiação , Hipofracionamento da Dose de Radiação , Bexiga Urinária/imunologia , Bexiga Urinária/efeitos da radiação , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Efeito Espectador/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Hospedeiro Imunocomprometido/imunologia , Masculino , Camundongos , Camundongos Nus , Terapia com Prótons , Doses de Radiação , Síncrotrons , Bexiga Urinária/patologia
10.
Int J Radiat Oncol Biol Phys ; 95(5): 1485-1494, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27325483

RESUMO

PURPOSE: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. METHODS AND MATERIALS: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. RESULTS: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. CONCLUSIONS: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.


Assuntos
Neoplasias Encefálicas/radioterapia , Irradiação Craniana/métodos , Glioma/radioterapia , Hipofracionamento da Dose de Radiação , Radioterapia Conformacional/métodos , Síncrotrons/instrumentação , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Feminino , Glioma/patologia , Humanos , Masculino , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos , Ratos , Ratos Endogâmicos F344 , Resultado do Tratamento , Carga Tumoral/efeitos da radiação
11.
Phys Med ; 31(6): 634-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26004351

RESUMO

Microbeam radiation therapy (MRT) is a new form of preclinical radiotherapy using quasi-parallel arrays of synchrotron X-ray microbeams. While the deposition of several hundred Grays in the microbeam paths, the normal brain tissues presents a high tolerance which is accompanied by the permanence of apparently normal vessels. Conversely, the efficiency of MRT on tumor growth control is thought to be related to a preferential damaging of tumor blood vessels. The high resistance of the healthy vascular network was demonstrated in different animal models by in vivo biphoton microscopy, magnetic resonance imaging, and histological studies. While a transient increase in permeability was shown, the structure of the vessels remained intact. The use of a chick chorioallantoic membrane at different stages of development showed that the damages induced by microbeams depend on vessel maturation. In vivo and ultrastructural observations showed negligible effects of microbeams on the mature vasculature at late stages of development; nevertheless a complete destruction of the immature capillary plexus was found in the microbeam paths. The use of MRT in rodent models revealed a preferential effect on tumor vessels. Although no major modification was observed in the vasculature of normal brain tissue, tumors showed a denudation of capillaries accompanied by transient increased permeability followed by reduced tumor perfusion and finally, a decrease in number of tumor vessels. Thus, MRT is a very promising treatment strategy with pronounced tumor control effects most likely based on the anti-vascular effects of MRT.


Assuntos
Vasos Sanguíneos/fisiopatologia , Vasos Sanguíneos/efeitos da radiação , Fracionamento da Dose de Radiação , Radioterapia de Alta Energia/métodos , Neoplasias Vasculares/fisiopatologia , Neoplasias Vasculares/radioterapia , Animais , Vasos Sanguíneos/patologia , Desenho de Equipamento , Medicina Baseada em Evidências , Humanos , Camundongos , Dosagem Radioterapêutica , Radioterapia de Alta Energia/instrumentação , Ratos , Resultado do Tratamento , Neoplasias Vasculares/patologia
12.
Int J Cancer ; 136(11): 2705-16, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25382544

RESUMO

Synchrotron microbeam radiation therapy (MRT) relies on the spatial fractionation of a synchrotron beam into parallel micron-wide beams allowing deposition of hectogray doses. MRT controls the intracranial tumor growth in rodent models while sparing normal brain tissues. Our aim was to identify the early biological processes underlying the differential effect of MRT on tumor and normal brain tissues. The expression of 28,000 transcripts was tested by microarray 6 hr after unidirectional MRT (400 Gy, 50 µm-wide microbeams, 200 µm spacing). The specific response of tumor tissues to MRT consisted in the significant transcriptomic modulation of 431 probesets (316 genes). Among them, 30 were not detected in normal brain tissues, neither before nor after MRT. Areg, Trib3 and Nppb were down-regulated, whereas all others were up-regulated. Twenty-two had similar expression profiles during the 2 weeks observed after MRT, including Ccnb1, Cdc20, Pttg1 and Plk1 related to the mitotic role of the Polo-like kinase (Plk) pathway. The up-regulation of Areg expression may indicate the emergence of survival processes in tumor cells triggered by the irradiation; while the modulation of the "mitotic role of Plk1" pathway, which relates to cytokinetic features of the tumor observed histologically after MRT, may partially explain the control of tumor growth by MRT. The identification of these tumor-specific responses permit to consider new strategies that might potentiate the antitumoral effect of MRT.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Proteínas de Ciclo Celular/genética , Família de Proteínas EGF/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Radioterapia/métodos , Transdução de Sinais/efeitos da radiação , Anfirregulina , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Transplante de Neoplasias , Especificidade de Órgãos , Poliploidia , Ratos , Síncrotrons , Raios X , Quinase 1 Polo-Like
13.
Neurobiol Dis ; 51: 152-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23159741

RESUMO

Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.


Assuntos
Epilepsia Tipo Ausência/radioterapia , Rede Nervosa/efeitos da radiação , Córtex Somatossensorial/efeitos da radiação , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Rede Nervosa/fisiopatologia , Ratos , Córtex Somatossensorial/fisiopatologia , Terapia por Raios X/métodos
14.
Int J Radiat Oncol Biol Phys ; 80(5): 1522-32, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21740994

RESUMO

PURPOSE: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development. METHODS AND MATERIALS: CAMs were irradiated with microplanar beams (width, ∼25 µm; interbeam spacing, ∼200 µm) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy. RESULTS: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus. Conversely, 200 Gy MR barely affected Day-12 CAM mature microvasculature. Morphological evaluation of Day-12 CAMs after the dose was increased to 300 Gy revealed opened interendothelial junctions, which could explain the transient mesenchymal edema immediately after irradiation. Electron micrographs revealed cytoplasmic vacuolization of endothelial cells in the beam path, with disrupted luminal surfaces; often the lumen was engorged with erythrocytes and leukocytes. After 30 min, the capillary plexus adopted a striated metronomic pattern, with alternating destroyed and intact zones, corresponding to the beam and the interbeam paths within the array. SLR at a dose of 10 Gy caused growth retardation, resulting in a remarkable reduction in the vascular endpoint density 24 h postirradiation. A dose of 40 Gy damaged the entire CAM vasculature. CONCLUSIONS: The effects of MR are mediated by capillary damage, with tissue injury caused by insufficient blood supply. Vascular toxicity and physiological effects of MR depend on the stage of capillary maturation and appear in the first 15 to 60 min after irradiation. Conversely, the effects of SLR, due to the arrest of cell proliferation, persist for a longer time.


Assuntos
Arteríolas/efeitos da radiação , Capilares/efeitos da radiação , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos da radiação , Lesões Experimentais por Radiação/patologia , Vênulas/efeitos da radiação , Animais , Arteríolas/patologia , Arteríolas/ultraestrutura , Capilares/patologia , Capilares/ultraestrutura , Proliferação de Células/efeitos da radiação , Embrião de Galinha , Membrana Corioalantoide/embriologia , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Endotélio Vascular/patologia , Endotélio Vascular/efeitos da radiação , Junções Intercelulares/patologia , Junções Intercelulares/efeitos da radiação , Doses de Radiação , Tolerância a Radiação/fisiologia , Síncrotrons , Fatores de Tempo , Vênulas/patologia , Vênulas/ultraestrutura
15.
J Synchrotron Radiat ; 16(Pt 4): 587-90, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19535875

RESUMO

The technical feasibility of temporal and spatial fractionations of the radiation dose has been evaluated using synchrotron microbeam radiation therapy for brain tumors in rats. A significant increase in lifespan (216%, p < 0.0001) resulted when three fractions of microbeam irradiation were applied to the tumor through three different ports, orthogonal to each other, at 24 h intervals. However, there were no long-term survivors, and immunohistological studies revealed that 9 L tumors were not entirely ablated.


Assuntos
Neoplasias Encefálicas/radioterapia , Gliossarcoma/radioterapia , Dosagem Radioterapêutica , Síncrotrons , Animais , Masculino , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA