Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(3): 510-526, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37863644

RESUMO

Hydroxymethylbilane synthase (HMBS), involved in haem biosynthesis, catalyses the head-to-tail coupling of four porphobilinogens (PBGs) via a dipyrromethane (DPM) cofactor. DPM is composed of two PBGs, and a hexapyrrole is built before the tetrapyrrolic 1-hydroxymethylbilane product is released. During this elongation, stable enzyme (E) intermediates are formed from the holoenzyme, with additional PBG substrates (S): ES, ES2 , ES3 and ES4 . Native PAGE and mass spectrometry of the acute intermittent porphyria (AIP)-associated HMBS variant p.Arg167Gln demonstrated an increased amount of ES3 . Kinetic parameters indicated catalytic dysfunction, however, the product release was not entirely prevented. Isolation and crystal structure analysis of the ES3 intermediate (PDB: 8PND) showed that a pentapyrrole was fully retained within the active site, revealing that polypyrrole elongation proceeds within the active site via a third interaction site, intermediate pyrrole site 3 (IPS3). The AIP-associated HMBS variant p.Arg195Cys, located on the opposite side to p.Arg167Gln in the active site, accumulated the ES4 intermediate in the presence of excess PBG, implying that product hydrolysis was obstructed. Arg167 is thus involved in all elongation steps and is a determinant for the rate of enzyme catalysis, whereas Arg195 is important for releasing the product. Moreover, by substituting residues in the vicinity of IPS3, our results indicate that a fully retained hexapyrrole could be hydrolysed in a novel site in proximity of the IPS3.


Assuntos
Hidroximetilbilano Sintase , Porfiria Aguda Intermitente , Humanos , Hidroximetilbilano Sintase/química , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/metabolismo , Polímeros , Pirróis , Domínio Catalítico , Mutação
2.
J Biol Chem ; 298(12): 102614, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265586

RESUMO

Collagen prolyl 4-hydroxylases (C-P4H) are α2ß2 tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the ß-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the ß/PDI subunit, are unknown. Here, we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact ß/PDI subunit, at 3.8 Å resolution. The CAT domain interacts with the a, b', and a' domains of the ß/PDI subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a ß-strand, which is the edge strand of its major antiparallel ß-sheet. This extra region of the CAT domain interacts tightly with the ß/PDI subunit, showing that the CAT-PDI interface includes an intersubunit disulfide bridge with the a' domain and tight hydrophobic interactions with the b' domain. Using this new information, the structure of the mature C-P4H-II α2ß2 tetramer is predicted. The model suggests that the CAT active-site properties are modulated by α-helices of the N-terminal dimerization domains of both subunits of the α2-dimer.


Assuntos
Prolil Hidroxilases , Isomerases de Dissulfetos de Proteínas , Humanos , Domínio Catalítico , Colágeno/metabolismo , Peptídeos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolil Hidroxilases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Conformação Proteica
3.
FEBS Open Bio ; 12(12): 2136-2146, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115019

RESUMO

Hydroxymethylbilane synthase (HMBS) is the third enzyme involved in haem biosynthesis, in which it catalyses the formation of tetrapyrrole 1-hydroxymethylbilane (HMB). In this process, HMBS binds four consecutive substrate molecules, creating the enzyme-intermediate complexes ES, ES2 , ES3 and ES4 . Pathogenic variants in the HMBS gene are associated with the dominantly inherited disorder acute intermittent porphyria. In this study, we have characterised the p.R26H variant to shed light on the role of Arg26 in the elongation mechanism of HMBS and to provide insights into its effect on the enzyme. With selected biophysical methods, we have been able to show that p.R26H forms a single enzyme-intermediate complex in the ES2 -state. We were also able to demonstrate that the p.R26H variant results in an inactive enzyme, which is unable to produce the HMB product.


Assuntos
Hidroximetilbilano Sintase , Porfiria Aguda Intermitente , Humanos , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/química , Hidroximetilbilano Sintase/metabolismo , Porfiria Aguda Intermitente/genética
4.
iScience ; 24(3): 102152, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665570

RESUMO

Porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthesis, catalyzes the sequential coupling of four porphobilinogen (PBG) molecules into a heme precursor. Mutations in PBGD are associated with acute intermittent porphyria (AIP), a rare metabolic disorder. We used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to demonstrate that wild-type PBGD and AIP-associated mutant R167W both existed as holoenzymes (Eholo) covalently attached to the dipyrromethane cofactor, and three intermediate complexes, ES, ES2, and ES3, where S represents PBG. In contrast, only ES2 was detected in AIP-associated mutant R173W, indicating that the formation of ES3 is inhibited. The R173W crystal structure in the ES2-state revealed major rearrangements of the loops around the active site, compared to wild-type PBGD in the Eholo-state. These results contribute to elucidating the structural pathogenesis of two common AIP-associated mutations and reveal the important structural role of Arg173 in the polypyrrole elongation mechanism.

5.
J Cell Sci ; 133(19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046605

RESUMO

Integrin activation and clustering by talin are early steps of cell adhesion. Membrane-bound talin head domain and kindlin bind to the ß integrin cytoplasmic tail, cooperating to activate the heterodimeric integrin, and the talin head domain induces integrin clustering in the presence of Mn2+ Here we show that kindlin-1 can replace Mn2+ to mediate ß3 integrin clustering induced by the talin head, but not that induced by the F2-F3 fragment of talin. Integrin clustering mediated by kindlin-1 and the talin head was lost upon deletion of the flexible loop within the talin head F1 subdomain. Further mutagenesis identified hydrophobic and acidic motifs in the F1 loop responsible for ß3 integrin clustering. Modeling, computational and cysteine crosslinking studies showed direct and catalytic interactions of the acidic F1 loop motif with the juxtamembrane domains of α- and ß3-integrins, in order to activate the ß3 integrin heterodimer, further detailing the mechanism by which the talin-kindlin complex activates and clusters integrins. Moreover, the F1 loop interaction with the ß3 integrin tail required the newly identified compact FERM fold of the talin head, which positions the F1 loop next to the inner membrane clasp of the talin-bound integrin heterodimer.This article has an associated First Person interview with the first author of the paper.


Assuntos
Integrina beta3 , Talina , Adesão Celular , Análise por Conglomerados , Integrina beta3/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Talina/genética , Talina/metabolismo
6.
Biochem J ; 476(2): 307-332, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30573650

RESUMO

The SCP2 (sterol carrier protein 2)-thiolase (type-1) functions in the vertebrate peroxisomal, bile acid synthesis pathway, converting 24-keto-THC-CoA and CoA into choloyl-CoA and propionyl-CoA. This conversion concerns the ß-oxidation chain shortening of the steroid fatty acyl-moiety of 24-keto-THC-CoA. This class of dimeric thiolases has previously been poorly characterized. High-resolution crystal structures of the zebrafish SCP2-thiolase (type-1) now reveal an open catalytic site, shaped by residues of both subunits. The structure of its non-dimerized monomeric form has also been captured in the obtained crystals. Four loops at the dimer interface adopt very different conformations in the monomeric form. These loops also shape the active site and their structural changes explain why a competent active site is not present in the monomeric form. Native mass spectrometry studies confirm that the zebrafish SCP2-thiolase (type-1) as well as its human homolog are weak transient dimers in solution. The crystallographic binding studies reveal the mode of binding of CoA and octanoyl-CoA in the active site, highlighting the conserved geometry of the nucleophilic cysteine, the catalytic acid/base cysteine and the two oxyanion holes. The dimer interface of SCP2-thiolase (type-1) is equally extensive as in other thiolase dimers; however, it is more polar than any of the corresponding interfaces, which correlates with the notion that the enzyme forms a weak transient dimer. The structure comparison of the monomeric and dimeric forms suggests functional relevance of this property. These comparisons provide also insights into the structural rearrangements that occur when the folded inactive monomers assemble into the mature dimer.


Assuntos
Acil Coenzima A/química , Proteínas de Transporte/química , Modelos Moleculares , Proteínas de Peixe-Zebra/química , Animais , Domínio Catalítico , Humanos , Especificidade por Substrato , Peixe-Zebra
7.
Proc Natl Acad Sci U S A ; 115(27): 7141-7146, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915055

RESUMO

Cyanobacteria are important photosynthetic organisms inhabiting a range of dynamic environments. This phylum is distinctive among photosynthetic organisms in containing genes encoding uncharacterized cystathionine ß-synthase (CBS)-chloroplast protein (CP12) fusion proteins. These consist of two domains, each recognized as stand-alone photosynthetic regulators with different functions described in cyanobacteria (CP12) and plants (CP12 and CBSX). Here we show that CBS-CP12 fusion proteins are encoded in distinct gene neighborhoods, several unrelated to photosynthesis. Most frequently, CBS-CP12 genes are in a gene cluster with thioredoxin A (TrxA), which is prevalent in bloom-forming, marine symbiotic, and benthic mat cyanobacteria. Focusing on a CBS-CP12 from Microcystis aeruginosa PCC 7806 encoded in a gene cluster with TrxA, we reveal that the domain fusion led to the formation of a hexameric protein. We show that the CP12 domain is essential for hexamerization and contains an ordered, previously structurally uncharacterized N-terminal region. We provide evidence that CBS-CP12, while combining properties of both regulatory domains, behaves different from CP12 and plant CBSX. It does not form a ternary complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase. Instead, CBS-CP12 decreases the activity of PRK in an AMP-dependent manner. We propose that the novel domain architecture and oligomeric state of CBS-CP12 expand its regulatory function beyond those of CP12 in cyanobacteria.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Cloroplastos/genética , Cistationina beta-Sintase/genética , Microcystis/genética , Família Multigênica , Proteínas de Bactérias/metabolismo , Proteínas de Cloroplastos/metabolismo , Cistationina beta-Sintase/metabolismo , Microcystis/metabolismo , Domínios Proteicos
8.
Protein Sci ; 26(2): 198-207, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27750369

RESUMO

Small zinc finger (ZnF) motifs are promising molecular scaffolds for protein design owing to their structural robustness and versatility. Moreover, their characterization provides important insights into protein folding in general. ZnF motifs usually possess an exceptional specificity and high affinity towards Zn(II) ion to drive folding. While the Zn(II) ion is canonically coordinated by two cysteine and two histidine residues, many other coordination spheres also exist in small ZnFs, all having four amino acid ligands. Here we used high-resolution mass spectrometry to study metal ion binding specificity and primary coordination sphere robustness of a designed zinc finger, named MM1. Based on the results, MM1 possesses high specificity for zinc with sub-micromolar binding affinity. Surprisingly, MM1 retains metal ion binding affinity even in the presence of selective alanine mutations of the primary zinc coordinating amino acid residues.


Assuntos
Modelos Moleculares , Dobramento de Proteína , Dedos de Zinco , Zinco/química , Substituição de Aminoácidos , Espectrometria de Massas , Mutação de Sentido Incorreto
9.
Inorg Chem ; 52(19): 10983-91, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24059258

RESUMO

Zinc metalloproteins are one of the most abundant and structurally diverse proteins in nature. In these proteins, the Zn(II) ion possesses a multifunctional role as it stabilizes the fold of small zinc fingers, catalyzes essential reactions in enzymes of all six classes, or assists in the formation of biological oligomers. Previously, a number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry. However, many of these surveys suffer from severe flaws and misinterpretations or are otherwise limited. To provide a more comprehensive, up-to-date picture on zinc coordination environments in proteins, zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail. A statistical analysis in terms of zinc coordinating amino acids, metal-to-ligand bond lengths, coordination number, and structural classification was performed, revealing coordination spheres from classical tetrahedral cysteine/histidine binding sites to more complex binuclear sites with carboxylated lysine residues. According to the results, coordination spheres of hundreds of crystal structures in the PDB could be misinterpreted due to symmetry-related molecules or missing electron densities for ligands. The analysis also revealed increasing average metal-to-ligand bond length as a function of crystallographic resolution, which should be taken into account when interrogating metal ion binding sites. Moreover, one-third of the zinc ions present in crystal structures are artifacts, merely aiding crystal formation and packing with no biological significance. Our analysis provides solid evidence that a minimal stable zinc coordination sphere is made up by four ligands and adopts a tetrahedral coordination geometry.


Assuntos
Complexos de Coordenação/química , Proteínas/química , Zinco/química , Cristalografia por Raios X , Bases de Dados de Proteínas , Espectroscopia de Ressonância Magnética , Modelos Moleculares
10.
J Mass Spectrom ; 47(7): 853-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22791252

RESUMO

The major protein of bovine seminal plasma, PDC-109, is a 109-residue polypeptide that exists as a polydisperse aggregate under native conditions. The oligomeric state of this aggregate varies with ionic strength and the presence of lipids. Binding of PDC-109 to choline phospholipids on the sperm plasma membrane results in an efflux of cholesterol and choline phospholipids, which is an important step in sperm capacitation. In this study, Fourier transform ion cyclotron resonance mass spectrometry was used to analyze PDC-109 purified from bovine seminal plasma. In addition to the previously known PDC-109 variants, four new sequence variants were identified by top-down mass spectrometry. For example, a protein variant containing point mutations P10L and G14R was identified along with another form having a 14-residue truncation in the N-terminal region. Two other minor variants could also be identified from the affinity-purified PDC-109. These results demonstrate that PDC-109 is naturally produced as a mixture of several protein forms, most of which have not been detected in previous studies. Native mass spectrometry revealed that PDC-109 is exclusively monomeric at low protein concentrations, suggesting that the protein oligomers are weakly bound and can easily be disrupted. Ligand binding to PDC-109 was also investigated, and it was observed that two molecules of O-phosphorylcholine bind to each PDC-109 monomer, consistent with previous reports.


Assuntos
Espectrometria de Massas/métodos , Sêmen/química , Proteínas Secretadas pela Vesícula Seminal/química , Sequência de Aminoácidos , Animais , Bovinos , Masculino , Dados de Sequência Molecular , Mutação Puntual , Proteínas Secretadas pela Vesícula Seminal/análise , Proteínas Secretadas pela Vesícula Seminal/classificação , Análise de Sequência de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA