Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 28(6): 591-611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498326

RESUMO

A series of novel Ga(III)-pyridine carboxylates ([Ga(Pic)3]·H2O (GaPic; HPic = picolinic acid), H3O[Ga(Dpic)2]·H2O (GaDpic; H2Dpic = dipicolinic acid), [Ga(Chel)(H2O)(OH)]2·4H2O (GaChel; H2Chel = chelidamic acid) and [Ga(Cldpic)(H2O)(OH)]2 (GaCldpic; H2Cldpic = 4-chlorodipicolinic acid)) have been synthesized by simple one-step procedure. Vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis and X-ray diffraction confirmed complexes molecular structure, inter and intramolecular interactions and their influence to spectral and thermal properties. Moreover, complex species speciation was described in Ga(III)-HPic and Ga(III)-H2Dpic systems by potentiometry and 1H NMR spectroscopy and mononuclear complex species were determined; [Ga(Pic)2]+ (logß021 = 16.23(6)), [Ga(Pic)3] (logß031 = 20.86(2)), [Ga(Dpic)2]- (logß021 = 15.42(9)) and [Ga(Dpic)2(OH)]2- (logß-121 = 11.08(4)). To confirm the complexes stability in 1% DMSO (primary solvent for biological testing), timescale 1H NMR spectra were measured (immediately after dissolution up to 96 h). Antimicrobial activity evaluated by IC50 (0.05 mM) is significant for GaDpic and GaCldpic against difficult to treat and multi-resistant P. aeruginosa. On the other hand, the GaPic complex is most effective against Jurkat, MDA-MB-231 and A2058 cancer cell lines and significantly also decreases the HepG2 cancer cells viability at 75 and 100 µM concentrations in a relatively short time (up to 48 h). In addition, fluorescence measurements have been used to elucidate bovine serum albumin binding activity between ligands, Ga(III) complexes and bovine serum albumin.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Soroalbumina Bovina/metabolismo , Piridinas/farmacologia , Estrutura Molecular , Linhagem Celular , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes
2.
Biomed Mater ; 16(5)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34280914

RESUMO

Acute myeloid leukemia (AML) is a highly aggressive type of cancer caused by the uncontrolled proliferation of undifferentiated myeloblasts, affecting the bone marrow and blood. Systemic chemotherapy is considered the primary treatment strategy; unfortunately, healthy cells are also affected to a large extent, leading to severe side effects of this treatment. Targeted drug therapies are becoming increasingly popular in modern medicine, as they bypass normal tissues and cells. Two-dimensional MoS2-based nanomaterials have attracted attention in the biomedical field as promising agents for cancer diagnosis and therapy. Cancer cells typically (over)express distinctive cytoplasmic membrane-anchored or -spanning protein-based structures (e.g., receptors, enzymes) that distinguish them from healthy, non-cancerous cells. Targeting cancer cells via tumor-specific markers using MoS2-based nanocarriers loaded with labels or drugs can significantly improve specificity and reduce side effects of such treatment. SKM-1 is an established AML cell line that has been employed in various bio-research applications. However, to date, it has not been used as the subject of studies on selective cancer targeting by inorganic nanomaterials. Here, we demonstrate an efficient targeting of AML cells using MoS2nanoflakes prepared by a facile exfoliation route and functionalized with anti-CD33 antibody that binds to CD33 receptors expressed by SKM-1 cells. Microscopic analyses by confocal laser scanning microscopy supplemented by label-free confocal Raman microscopy proved that (anti-CD33)-MoS2conjugates were present on the cell surface and within SKM-1 cells, presumably having been internalized via CD33-mediated endocytosis. Furthermore, the cellular uptake of SKM-1 specific (anti-CD33)-MoS2conjugates assessed by flow cytometry analysis was significantly higher compared with the cellular uptake of SKM-1 nonspecific (anti-GPC3)-MoS2conjugates. Our results indicate the importance of appropriate functionalization of MoS2nanomaterials by tumor-recognizing elements that significantly increase their specificity and hence suggest the utilization of MoS2-based nanomaterials in the diagnosis and therapy of AML.


Assuntos
Dissulfetos/química , Sistemas de Liberação de Medicamentos/métodos , Leucemia Mieloide Aguda/metabolismo , Molibdênio/química , Nanoconjugados/química , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Humanos , Microscopia Óptica não Linear , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia
3.
Cells ; 9(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268491

RESUMO

P-glycoprotein (P-gp, ABCB1 member of the ABC (ATP-binding cassette) transporter family) localized in leukemia cell plasma membranes is known to reduce cell sensitivity to a large but well-defined group of chemicals known as P-gp substrates. However, we found previously that P-gp-positive sublines of L1210 murine leukemia cells (R and T) but not parental P-gp-negative parental cells (S) are resistant to the endoplasmic reticulum (ER) stressor tunicamycin (an N-glycosylation inhibitor). Here, we elucidated the mechanism of tunicamycin resistance in P-gp-positive cells. We found that tunicamycin at a sublethal concentration of 0.1 µM induced retention of the cells in the G1 phase of the cell cycle only in the P-gp negative variant of L1210 cells. P-gp-positive L1210 cell variants had higher expression of the ER stress chaperone GRP78/BiP compared to that of P-gp-negative cells, in which tunicamycin induced larger upregulation of CHOP (C/EBP homologous protein). Transfection of the sensitive P-gp-negative cells with plasmids containing GRP78/BiP antagonized tunicamycin-induced CHOP expression and reduced tunicamycin-induced arrest of cells in the G1 phase of the cell cycle. Taken together, these data suggest that the resistance of P-gp-positive cells to tunicamycin is due to increased levels of GRP78/BiP, which is overexpressed in both resistant variants of L1210 cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Leucemia/tratamento farmacológico , Tunicamicina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Camundongos
4.
Molecules ; 24(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195716

RESUMO

We describe the screening of a set of cryptopleurine derivatives, namely thienoquinolizidine derivatives and (epi-)benzo analogs with bioactive phenanthroquinolizidine alkaloids that induce cytotoxic effects in the mouse lymphocytic leukemia cell line L1210. We used three variants of L1210 cells: i) parental cells (S) negative for P-glycoprotein (P-gp) expression; ii) P-glycoprotein positive cells (R), obtained by selection with vincristine; iii) P-glycoprotein positive cells (T), obtained by stable transfection with a human gene encoding P-glycoprotein. We identified the most effective derivative 11 with a median lethal concentration of ≈13 µM in all three L1210 cell variants. The analysis of the apoptosis/necrosis induced by derivative 11 revealed that cell death was the result of apoptosis with late apoptosis characteristics. Derivative 11 did not induce a strong alteration in the proportion of cells in the G1, S or G2/M phase of the cell cycle, but a strong increase in the number of S, R and T cells in the subG1 phase was detected. These findings indicated that we identified the most effective inducer of cell death, derivative 11, and this derivative effectively induced cell death in S, R and T cells at similar inhibitory concentrations independent of P-gp expression.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Leucemia/metabolismo , Leucemia/patologia , Fenantrolinas/análise , Fenantrolinas/farmacologia , Quinolizinas/análise , Quinolizinas/farmacologia , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Fenantrolinas/química , Quinolizinas/química , Coloração e Rotulagem , Proteína X Associada a bcl-2/metabolismo
5.
J Inorg Biochem ; 186: 206-216, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29960924

RESUMO

In the current study the ability of silver pyridine-2-sulfonate complex to exert multiple biological activities is compared with the pharmacological action of silver sulfadiazine (AgSD). Polymeric form of {[Ag(py-2-SO3)]}n (AgPS) was synthesized and characterized by analytical techniques (IR, CHN, TG/DTA, MS) and its molecular formula was established. The crystal structure was determined by X-ray diffraction method and the polymeric complex crystallizes in the triclinic P-1 space group. The stability of Ag(I) complex was verified by 1H and 13C NMR measurements and the interaction with calf thymus DNA through UV-VIS and fluorescence quenching experiments was studied. The Ag(I) complex was able to interact with DNA by dual binding mode: partial intercalation along groove binding. The binding constants were calculated to be in the order of 103 M-1. Topoisomerase I inhibition study have shown that silver complex is inhibiting its activity at concentration of 30 µM. The cytotoxic activity of AgPS and AgSD against mouse leukaemia L1210 S, R and T cell line was also evaluated. AgPS showed higher cytotoxicity than AgSD after 48 h incubation. The results suggest that mechanism of cell death is necrosis with a contribution of late apoptosis. Antimicrobial testing indicates higher growth inhibition effect of AgPS with comparison to commercially available AgSD.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Complexos de Coordenação , Piridinas , Prata , Inibidores da Topoisomerase I , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Piridinas/química , Piridinas/farmacologia , Prata/química , Prata/farmacologia , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia
6.
Anticancer Res ; 35(5): 2627-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25964538

RESUMO

BACKGROUND/AIM: P-glycoprotein (Pgp) expression in neoplastic cells is known to reduce cell sensitivity to several cytotoxic Pgp substrates. A member of the ABC transporter family, Pgp, represents the most frequently described membrane efflux pump and its expression in neoplastic cells is responsible for multi-drug resistance. Several lines of evidence indicate that the expression and increased function of both Pgp and glucosylceramide synthase (GCS, an enzyme responsible for ceramide pathway de-activation in the regulation of apoptosis progression) enhance the resistance of Pgp-positive cells. Previously, we described a reduction in the uridine diphosphate (UDP)-glucose contents of mouse leukemia cells (R) expressing Pgp due to vincristine selection compared to parental L1210 cells (S). The reduced availability of UDP-glucose as a glucose donor in R cell glycosylation reactions could limit GCS-catalyzed ceramide glycosylation. Consequently, the over-expression of Pgp in Pgp-positive L1210 cells may be associated with reduced ceramide glycosylation. MATERIALS AND METHODS: To test this idea, we measured the expression and activities of Pgp and GCS, UDP-glucose levels, cellular uptake of C12-NBD-ceramide (a fluorescent analogue of ceramide) and ceramide-induced cell death in S and R cells. T-cells, another Pgp-positive variant of L1210 cells that express Pgp due to their transfection with a gene encoding human Pgp were also used in this study. RESULTS: We detected significantly reduced levels of C12-NBD-ceramide glycosylation and reduced UDP-glucose contents in Pgp-positive R and T-cells compared to S cells. C12-NBD-ceramide uptake assays revealed nearly identical dynamics of uptake time-dependency curves. The Pgp-positive L1210 variants (R and T) are more sensitive than Pgp-negative S cells to ceramide-induced cell damage, as measured by an fluorescein isothiocyanate-labeled annexin V and propidium iodide apoptosis necrosis kit. Short chain C2-ceramide was more effective at inducing cell damage than ceramide analogues with longer chains. CONCLUSION: These evidence indicates that the down-regulation of UDP-glucose contents in Pgp-positive L1210 cells is responsible for their collateral sensitivity to ceramide-induced apoptosis.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Resistencia a Medicamentos Antineoplásicos/genética , Glucosiltransferases/biossíntese , Neoplasias/tratamento farmacológico , 4-Cloro-7-nitrobenzofurazano/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ceramidas/administração & dosagem , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Uridina Difosfato Glucose/biossíntese
7.
Gen Physiol Biophys ; 27(4): 253-62, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19202198

RESUMO

The basal 45Ca2+ influx into resting human blood lymphocytes was measured. This process showed biphasic kinetics with first rapid phase followed by the second long-lasting and markedly slower phase. Further, it showed signs of saturability and reaches maximal values at 37 degrees C and extracellular pH 7.2. The basal 45Ca2+ influx was stimulated by addition of submicromolar concentrations of 4 beta-phorbol-12-myristate-13-acetate, and this effect was abolished by protein kinase C (PKC) inhibitor Ro-31-8220. In the regulation of basal 45Ca2+ influx is probably only partially involved adenylate cyclase pathway as show results with intracellular c-AMP elevating agents (dB-c-AMP, 3-isobutyl-1-metylxantine and forskolin). Uncoupler 3,3',4',5-tetrachloro-salicylanilide (TCS) in micromolar concentrations stimulated basal 45Ca2+ influx and its effect was more significant in media with high extracellular concentration of K+.


Assuntos
Cálcio/fisiologia , Linfócitos/fisiologia , Transporte Biológico Ativo , Radioisótopos de Cálcio , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , Humanos , Técnicas In Vitro , Indóis/farmacologia , Cinética , Linfócitos/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Potássio/metabolismo , Proteína Quinase C/antagonistas & inibidores , Salicilanilidas/farmacologia
8.
Biochim Biophys Acta ; 1770(1): 99-105, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16938400

RESUMO

The adaptation to extreme concentrations of Ca(2+) and its consequence on the properties of the (45)Ca(2+) transport were studied in submerged mycelia of Trichoderma viride. The adaptation to low [Ca(2+)](o) did not cause changes in kinetic parameters of the (45)Ca(2+) influx but the adaptation to high [Ca(2+)](o) increased the K(M(Ca2+)). The V(max) of the (45)Ca(2+) influx decreased with the age of (non-adapted) mycelia with concomitant decrease of the K(M(Ca2+)) these changes were prevented in mycelia adapted to high Ca(2+). High [Ca(2+)](o) decreased the stimulation by the uncoupler, 3, 3', 4', 5-tetrachloro salicylanilide (TCS) (30 muM), as compared to the control, whereas the Ca(2+) chelator, EGTA, stimulated it. In the aged mycelia, the stimulation by TCS of the (45)Ca(2+) influx faded away, in parallel with the activity of the H(+)-ATPase. The (45)Ca(2+) efflux from mycelia was affected by TCS in a similar way as the (45)Ca(2+) influx. The results demonstrate the adaptive responses of transport processes participating in the mycelial Ca(2+) homeostasis and ageing are in agreement with a notion that both Ca(2+)-influx and-efflux are coupled by the H(+)-homeostasis at the plasma membrane.


Assuntos
Cálcio/metabolismo , Prótons , Trichoderma/metabolismo , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Transporte de Íons , ATPases Translocadoras de Prótons/metabolismo
9.
Antonie Van Leeuwenhoek ; 91(4): 407-16, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17151955

RESUMO

Identical masses of submerged Trichoderma viride mycelia of various ages were used as inoculum for a second submerged cultivation lasting for 24 h. It was found that the growth yield of secondary culture was dependent on the age of inoculum. The growth yields increased when the age of primary culture was less than 3 d, and decreased down to zero when older mycelia were inoculated. The mycelia were living even after 1 month of submerged cultivation, as they formed conidia after inoculating onto solid medium. In order to elucidate underlying biochemical processes, developmental changes of specific activities of organellar marker enzymes were measured in the mitochondrial/vacuolar and microsomal fractions of mycelia. These activities changed during the growth of mycelia in a biphasic manner and their time courses were remarkably similar. Only the H(+)-ATPase activity decreased monophasically with the age of mycelia. Membrane-bound proteases of both membrane fractions changed differently upon ageing. These results could not be explained as a consequence of nutrient starvation and indicate that the prolonged submerged cultivation triggers coordinated series of biochemical events which leads to the loss of growth competence.


Assuntos
Micélio/crescimento & desenvolvimento , Trichoderma/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Micélio/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Fatores de Tempo , Trichoderma/enzimologia
10.
J Immunol ; 173(6): 3783-90, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15356125

RESUMO

During the selection process in the thymus, most thymocytes are eliminated by apoptosis through signaling via TCR or glucocorticoids. The involvement of ceramide (Cer) and sphingosine (SP), important apoptotic mediators, remains poorly defined in glucocorticoid-induced apoptosis. We report that, in mouse thymocytes, apoptosis triggered by 10(-6) M dexamethasone (DX) was preceded by a caspase-dependent Cer and SP generation, together with activation of acidic and neutral ceramidases. Apoptosis was drastically reduced by blocking either sphingolipid production (by acid sphingomyelinase inhibitor) or SP production (by ceramidase inhibitors), but not by inhibition of de novo Cer synthesis. Thus, SP generated through acid sphingomyelinase and ceramidase activity would contribute to the apoptotic effect of DX. Consistent with this hypothesis, SP addition or inhibition of SP kinase induced thymocyte apoptosis. DX induced a proteasome-dependent loss of mitochondrial membrane potential (Deltapsim) and caspase-8, -3, and -9 processing. Apoptosis was abolished by inhibition of Deltapsim loss or caspase-8 or -3, but not caspase-9. Deltapsim loss was independent of SP production and caspase-8, -3, and -9 activation. However, inhibition of SP production reduced caspase-8 and -3, but not caspase-9 processing. Proteasome inhibition impaired activation of the three caspases, whereas inhibition of Deltapsim loss solely blocked caspase-9 activation. These data indicate that DX-induced apoptosis is mediated in part by SP, which contributes, together with proteasome activity, to caspase-8-3 processing independently of mitochondria, and in part by the proteasome/mitochondria pathway, although independently of caspase-9 activation.


Assuntos
Apoptose/imunologia , Dexametasona/farmacologia , Mitocôndrias/fisiologia , Transdução de Sinais/imunologia , Esfingosina/fisiologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Amidoidrolases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3 , Caspase 8 , Caspases/metabolismo , Caspases/fisiologia , Células Cultivadas , Ceramidases , Ceramidas/biossíntese , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/fisiologia , Ativação Enzimática/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/fisiologia , Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional/imunologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingosina/biossíntese , Esfingosina/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA