Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(7): 1420-1433, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956208

RESUMO

Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação , Proteína 3 Homóloga a MutS/genética , Taxa de Mutação , Mutação da Fase de Leitura/genética
2.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405882

RESUMO

Immune system control is a major hurdle that cancer evolution must circumvent. The relative timing and evolutionary dynamics of subclones that have escaped immune control remain incompletely characterized, and how immune-mediated selection shapes the epigenome has received little attention. Here, we infer the genome- and epigenome-driven evolutionary dynamics of tumour-immune coevolution within primary colorectal cancers (CRCs). We utilise our existing CRC multi-region multi-omic dataset that we supplement with high-resolution spatially-resolved neoantigen sequencing data and highly multiplexed imaging of the tumour microenvironment (TME). Analysis of somatic chromatin accessibility alterations (SCAAs) reveals frequent somatic loss of accessibility at antigen presenting genes, and that SCAAs contribute to silencing of neoantigens. We observe that strong immune escape and exclusion occur at the outset of CRC formation, and that within tumours, including at the microscopic level of individual tumour glands, additional immune escape alterations have negligible consequences for the immunophenotype of cancer cells. Further minor immuno-editing occurs during local invasion and is associated with TME reorganisation, but that evolutionary bottleneck is relatively weak. Collectively, we show that immune evasion in CRC follows a "Big Bang" evolutionary pattern, whereby genetic, epigenetic and TME-driven immune evasion acquired by the time of transformation defines subsequent cancer-immune evolution.

3.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546942

RESUMO

Drug resistance results in poor outcomes for most patients with metastatic cancer. Adaptive Therapy (AT) proposes to address this by exploiting presumed fitness costs incurred by drug-resistant cells when drug is absent, and prescribing dose reductions to allow fitter, sensitive cells to re-grow and re-sensitise the tumour. However, empirical evidence for treatment-induced fitness change is lacking. We show that fitness costs in chemotherapy-resistant ovarian cancer cause selective decline and apoptosis of resistant populations in low-resource conditions. Moreover, carboplatin AT caused fluctuations in sensitive/resistant tumour population size in vitro and significantly extended survival of tumour-bearing mice. In sequential blood-derived cell-free DNA and tumour samples obtained longitudinally from ovarian cancer patients during treatment, we inferred resistant cancer cell population size through therapy and observed it correlated strongly with disease burden. These data have enabled us to launch a multicentre, phase 2 randomised controlled trial (ACTOv) to evaluate AT in ovarian cancer.

4.
Res Sq ; 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090678

RESUMO

Locally advanced oesophageal adenocarcinoma (EAC) remains difficult to treat because of common resistance to neoadjuvant therapy and high recurrence rates. The ecological and evolutionary dynamics responsible for treatment failure are incompletely understood. Here, we performed a comprehensive multi-omic analysis of samples collected from EAC patients in the MEMORI clinical trial, revealing major changes in gene expression profiles and immune microenvironment composition that did not appear to be driven by changes in clonal composition. Multi-region multi-timepoint whole exome (300x depth) and paired transcriptome sequencing was performed on 27 patients pre-, during and after neoadjuvant treatment. EAC showed major transcriptomic changes during treatment with upregulation of immune and stromal pathways and oncogenic pathways such as KRAS, Hedgehog and WNT. However, genetic data revealed that clonal sweeps were rare, suggesting that gene expression changes were not clonally driven. Additional longitudinal image mass cytometry was performed in a subset of 15 patients and T-cell receptor sequencing in 10 patients, revealing remodelling of the T-cell compartment during treatment and other shifts in microenvironment composition. The presence of immune escape mechanisms and a lack of clonal T-cell expansions were linked to poor clinical treatment response. This study identifies profound transcriptional changes during treatment with limited evidence that clonal replacement is the cause, suggesting phenotypic plasticity and immune dynamics as mechanisms for therapy resistance with pharmacological relevance.

5.
Nat Genet ; 55(3): 451-460, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36894710

RESUMO

In cancer, evolutionary forces select for clones that evade the immune system. Here we analyzed >10,000 primary tumors and 356 immune-checkpoint-treated metastases using immune dN/dS, the ratio of nonsynonymous to synonymous mutations in the immunopeptidome, to measure immune selection in cohorts and individuals. We classified tumors as immune edited when antigenic mutations were removed by negative selection and immune escaped when antigenicity was covered up by aberrant immune modulation. Only in immune-edited tumors was immune predation linked to CD8 T cell infiltration. Immune-escaped metastases experienced the best response to immunotherapy, whereas immune-edited patients did not benefit, suggesting a preexisting resistance mechanism. Similarly, in a longitudinal cohort, nivolumab treatment removes neoantigens exclusively in the immunopeptidome of nonimmune-edited patients, the group with the best overall survival response. Our work uses dN/dS to differentiate between immune-edited and immune-escaped tumors, measuring potential antigenicity and ultimately helping predict response to treatment.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Nivolumabe , Antígenos de Neoplasias/genética , Linfócitos T CD8-Positivos , Mutação
6.
Nature ; 611(7937): 733-743, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289335

RESUMO

Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.


Assuntos
Neoplasias Colorretais , Epigenoma , Genoma Humano , Mutação , Humanos , Adenoma/genética , Adenoma/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromatina/genética , Cromatina/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Epigenoma/genética , Oncogenes/genética , Fatores de Transcrição/metabolismo , Genoma Humano/genética , Interferons
7.
Nature ; 611(7937): 744-753, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289336

RESUMO

Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity1. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, we find that the majority of intratumour variation in gene expression is not strongly heritable but rather 'plastic'. Somatic expression quantitative trait loci analysis identified a number of putative genetic controls of expression by cis-acting coding and non-coding mutations, the majority of which were clonal within a tumour, alongside frequent structural alterations. Consistently, computational inference on the spatial patterning of tumour phylogenies finds that a considerable proportion of CRCs did not show evidence of subclonal selection, with only a subset of putative genetic drivers associated with subclone expansions. Spatial intermixing of clones is common, with some tumours growing exponentially and others only at the periphery. Together, our data suggest that most genetic intratumour variation in CRC has no major phenotypic consequence and that transcriptional plasticity is, instead, widespread within a tumour.


Assuntos
Adaptação Fisiológica , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Fenótipo , Humanos , Adaptação Fisiológica/genética , Células Clonais/metabolismo , Células Clonais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Sequenciamento do Exoma , Transcrição Gênica
8.
Nat Commun ; 13(1): 4487, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068219

RESUMO

Clinical archives of patient material near-exclusively consist of formalin-fixed and paraffin-embedded (FFPE) blocks. The ability to precisely characterise mutational signatures from FFPE-derived DNA has tremendous translational potential. However, sequencing of DNA derived from FFPE material is known to be riddled with artefacts. Here we derive genome-wide mutational signatures caused by formalin fixation. We show that the FFPE-signature is highly similar to signature 30 (the signature of Base Excision Repair deficiency due to NTHL1 mutations), and chemical repair of DNA lesions leads to a signature highly similar to signature 1 (clock-like signature due to spontaneous deamination of methylcytosine). We demonstrate that using uncorrected mutational catalogues of FFPE samples leads to major mis-assignment of signature activities. To correct for this, we introduce FFPEsig, a computational algorithm to rectify the formalin-induced artefacts in the mutational catalogue. We demonstrate that FFPEsig enables accurate mutational signature analysis both in simulated and whole-genome sequenced FFPE cancer samples. FFPEsig thus provides an opportunity to unlock additional clinical potential of archival patient tissues.


Assuntos
Formaldeído , Genoma Humano , Humanos , Mutação , Inclusão em Parafina , Fixação de Tecidos
9.
Nat Commun ; 13(1): 1798, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379804

RESUMO

The evolutionary dynamics of tumor initiation remain undetermined, and the interplay between neoplastic cells and the immune system is hypothesized to be critical in transformation. Colorectal cancer (CRC) presents a unique opportunity to study the transition to malignancy as pre-cancers (adenomas) and early-stage cancers are frequently resected. Here, we examine tumor-immune eco-evolutionary dynamics from pre-cancer to carcinoma using a computational model, ecological analysis of digital pathology data, and neoantigen prediction in 62 patient samples. Modeling predicted recruitment of immunosuppressive cells would be the most common driver of transformation. As predicted, ecological analysis reveals that progressed adenomas co-localized with immunosuppressive cells and cytokines, while benign adenomas co-localized with a mixed immune response. Carcinomas converge to a common immune "cold" ecology, relaxing selection against immunogenicity and high neoantigen burdens, with little evidence for PD-L1 overexpression driving tumor initiation. These findings suggest re-engineering the immunosuppressive niche may prove an effective immunotherapy in CRC.


Assuntos
Adenoma , Carcinoma , Neoplasias Colorretais , Evolução Biológica , Neoplasias Colorretais/patologia , Humanos , Imunoterapia
10.
Nat Biotechnol ; 40(5): 720-730, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34980912

RESUMO

Molecular clocks that record cell ancestry mutate too slowly to measure the short-timescale dynamics of cell renewal in adult tissues. Here, we show that fluctuating DNA methylation marks can be used as clocks in cells where ongoing methylation and demethylation cause repeated 'flip-flops' between methylated and unmethylated states. We identify endogenous fluctuating CpG (fCpG) sites using standard methylation arrays and develop a mathematical model to quantitatively measure human adult stem cell dynamics from these data. Small intestinal crypts were inferred to contain slightly more stem cells than the colon, with slower stem cell replacement in the small intestine. Germline APC mutation increased the number of replacements per crypt. In blood, we measured rapid expansion of acute leukemia and slower growth of chronic disease. Thus, the patterns of human somatic cell birth and death are measurable with fluctuating methylation clocks (FMCs).


Assuntos
Células-Tronco Adultas , Metilação de DNA , Adulto , Linhagem da Célula/genética , Colo/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Humanos , Células-Tronco
11.
iScience ; 24(8): 102889, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401670

RESUMO

Cell-free DNA (cfDNA) measured via liquid biopsies provides a way for minimally invasive monitoring of tumor evolutionary dynamics during therapy. Here we present liquidCNA, a method to track subclonal evolution from longitudinally collected cfDNA samples sequenced through cost-effective low-pass whole-genome sequencing. LiquidCNA utilizes somatic copy number alteration (SCNA) to simultaneously genotype and quantify the size of the dominant subclone without requiring B-allele frequency information, matched-normal samples, or prior knowledge on the genetic identity of the emerging clone. We demonstrate the accuracy of liquidCNA in synthetically generated sample sets and in vitro mixtures of cancer cell lines. In vivo application in patients with metastatic lung cancer reveals the progressive emergence of a novel tumor subpopulation. LiquidCNA is straightforward to use, is computationally inexpensive, and enables continuous monitoring of subclonal evolution to understand and control-therapy-induced resistance.

12.
Nat Genet ; 52(10): 1057-1066, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929288

RESUMO

Cancers accumulate mutations that lead to neoantigens, novel peptides that elicit an immune response, and consequently undergo evolutionary selection. Here we establish how negative selection shapes the clonality of neoantigens in a growing cancer by constructing a mathematical model of neoantigen evolution. The model predicts that, without immune escape, tumor neoantigens are either clonal or at low frequency; hypermutated tumors can only establish after the evolution of immune escape. Moreover, the site frequency spectrum of somatic variants under negative selection appears more neutral as the strength of negative selection increases, which is consistent with classical neutral theory. These predictions are corroborated by the analysis of neoantigen frequencies and immune escape in exome and RNA sequencing data from 879 colon, stomach and endometrial cancers.


Assuntos
Antígenos de Neoplasias/genética , Imunidade Celular/genética , Neoplasias/genética , Seleção Genética/genética , Evolução Clonal/genética , Exoma/genética , Humanos , Linfócitos do Interstício Tumoral/imunologia , Modelos Teóricos , Mutação/genética , Neoplasias/imunologia , Neoplasias/patologia , Seleção Genética/imunologia , Sequenciamento do Exoma
13.
BMC Bioinformatics ; 20(1): 264, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117948

RESUMO

BACKGROUND: Next generation sequencing has yielded an unparalleled means of quickly determining the molecular make-up of patient tumors. In conjunction with emerging, effective immunotherapeutics for a number of cancers, this rapid data generation necessitates a paired high-throughput means of predicting and assessing neoantigens from tumor variants that may stimulate immune response. RESULTS: Here we offer NeoPredPipe (Neoantigen Prediction Pipeline) as a contiguous means of predicting putative neoantigens and their corresponding recognition potentials for both single and multi-region tumor samples. NeoPredPipe is able to quickly provide summary information for researchers, and clinicians alike, on predicted neoantigen burdens while providing high-level insights into tumor heterogeneity given somatic mutation calls and, optionally, patient HLA haplotypes. Given an example dataset we show how NeoPredPipe is able to rapidly provide insights into neoantigen heterogeneity, burden, and immune stimulation potential. CONCLUSIONS: Through the integration of widely adopted tools for neoantigen discovery NeoPredPipe offers a contiguous means of processing single and multi-region sequence data. NeoPredPipe is user-friendly and adaptable for high-throughput performance. NeoPredPipe is freely available at https://github.com/MathOnco/NeoPredPipe .


Assuntos
Antígenos de Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Humanos
14.
J Struct Biol ; 203(1): 46-53, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29738832

RESUMO

Titin is a giant protein spanning between the Z- and M-lines of the sarcomere. In the A-band titin is associated with the myosin thick filament. It has been speculated that titin may serve as a blueprint for thick-filament formation due to the super-repeat structure of its A-band domains. Accordingly, titin might provide a template that determines the length and structural periodicity of the thick filament. Here we tested the titin ruler hypothesis by mixing titin and myosin at in situ stoichiometric ratios (300 myosins per 12 titins) in buffers of different ionic strength (KCl concentration range 100-300 mM). The topology of the filamentous complexes was investigated with atomic force microscopy. We found that the samples contained distinct, segregated populations of titin molecules and myosin thick filaments. We were unable to identify complexes in which myosin molecules were regularly associated to either mono- or oligomeric titin in either relaxed or stretched states of the titin filaments. Thus, the electrostatically driven self-association is stronger in both myosin and titin than their binding to each other, and it is unlikely that titin functions as a geometrical template for thick-filament formation. However, when allowed to equilibrate configurationally, long myosin thick filaments appeared with titin oligomers attached to their surface. The titin meshwork formed on the thick-filament surface may play a role in controlling thick-filament length by regulating the structural dynamics of myosin molecules and placing a mechanical limit on the filament length.


Assuntos
Conectina/química , Miosinas/química , Animais , Microscopia de Força Atômica , Coelhos
15.
PLoS One ; 12(5): e0177336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489927

RESUMO

We determine p53 protein abundances and cell to cell variation in two human cancer cell lines with single cell resolution, and show that the fractional width of the distributions is the same in both cases despite a large difference in average protein copy number. We developed a computational framework to identify dominant mechanisms controlling the variation of protein abundance in a simple model of gene expression from the summary statistics of single cell steady state protein expression distributions. Our results, based on single cell data analysed in a Bayesian framework, lends strong support to a model in which variation in the basal p53 protein abundance may be best explained by variations in the rate of p53 protein degradation. This is supported by measurements of the relative average levels of mRNA which are very similar despite large variation in the level of protein.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Neoplasias Colorretais/patologia , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteólise , RNA Mensageiro/análise , RNA Mensageiro/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA