Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1686: 1-9, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457994

RESUMO

Uric acid has a role in several physiological and pathophysiological processes. For example, uric acid may facilitate seizure generalization while reducing uric acid level may evoke anticonvulsant/antiepileptic effects. Allopurinol blocks the activity of xanthine oxidase, by which allopurinol inhibits catabolism of hypoxanthine to xanthine and uric acid and, as a consequence, decreases the level of uric acid. Although the modulation of serum uric acid level is a widely used strategy in the treatment of certain diseases, our knowledge regarding the effects of uric acid on epileptic activity is far from complete. Thus, the main aim of this study was the investigation of the effect of uric acid on absence epileptic seizures (spike-wave discharges: SWDs) in a model of human absence epilepsy, the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rat. We investigated the influence of intraperitoneally (i.p.) injected uric acid (100 mg/kg and 200 mg/kg), allopurinol (50 mg/kg and 100 mg/kg), a cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibitor indomethacin (10 mg/kg) and inosine (500 mg/kg) alone and the combined application of allopurinol (50 mg/kg) with uric acid (100 mg/kg) or inosine (500 mg/kg) as well as indomethacin (10 mg/kg) with uric acid (100 mg/kg) and inosine (500 mg/kg) with uric acid (100 mg/kg) on absence epileptic activity. We demonstrated that both uric acid and allopurinol alone significantly increased the number of SWDs whereas indomethacin abolished the uric acid-evoked increase in SWD number. Our results suggest that uric acid and allopurinol have proepileptic effects in WAG/Rij rats.


Assuntos
Alopurinol/farmacologia , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Epilepsia Tipo Ausência/induzido quimicamente , Ácido Úrico/farmacologia , Animais , Encéfalo/fisiopatologia , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Ratos Wistar
2.
Brain Res Bull ; 124: 172-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27154620

RESUMO

The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system.


Assuntos
Anticonvulsivantes/efeitos adversos , Epilepsia Tipo Ausência/induzido quimicamente , Guanosina/efeitos adversos , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroencefalografia , Análise de Fourier , Indometacina/farmacologia , Lipopolissacarídeos/toxicidade , Antagonistas de Receptores Purinérgicos P1/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Teofilina/farmacologia , Fatores de Tempo , Triazóis/farmacologia
3.
Curr Med Chem ; 22(12): 1500-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25666791

RESUMO

One-third of epileptic patients are drug refractory due to the limited efficacy of antiepileptic therapy. Thus, there is an immense need to find more effective, safer and well-tolerated antiepileptic drugs. A great deal of results suggests that adenosine (Ado), guanosine (Guo), inosine (Ino) or uridine (Urd) are endogenous antiepileptogenic modulators. Furthermore, nucleosides and their derivatives may be safe and effective potential drugs in the treatment of epilepsy. Conversely, nucleosidergic modulatory system implying nucleoside levels, metabolism, receptors and transporters may also be involved in seizure pathomechanisms. Application of Ado receptor agonists as well as antagonists, elevation of nucleoside levels (e.g., by nucleoside metabolism inhibitors, and Adoreleasing implants) or utilization of non-Ado nucleosides may also turn to be useful approaches to decrease epileptic activity. However, all drugs exerting their effects on the nucleosidergic modulatory system may affect the fine regulation of glia-neuron interactions that are intimately governed by various nucleosidergic processes. Perturbation of the complex, bidirectional communication between neurons and astrocytes through these nucleosidergic modulatory mechanisms may lead to pathological changes in the central nervous system (CNS) and therefore may cause significant side effects. Thus, a deeper understanding of the nucleosidergic modulatory control over glia-neuron interactions is essential in order to develop more effective and safe nucleoside-based antiepileptic drugs. In this review article we focus on the role of Ado and Urd in glia-neuron interactions, placing emphasis on their implications for the treatment of epilepsy.


Assuntos
Anticonvulsivantes/química , Neuroglia/metabolismo , Neurônios/metabolismo , Nucleosídeos/química , Animais , Anticonvulsivantes/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/metabolismo
4.
Mini Rev Med Chem ; 14(13): 1033-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25382017

RESUMO

Adenosine (Ado) and some non-adenosine (non-Ado) nucleosides including inosine (Ino), guanosine (Guo) and uridine (Urd) are modulatory molecules in the central nervous system (CNS), regulating different physiological and pathophysiological processes in the brain such as sleep and epilepsy. Indeed, different drugs effective on adenosinergic system (e.g., Ado metabolism inhibitors, agonists and antagonists of Ado receptors) are being used in drug development for the treatment of epileptic disorders. Although (i) endogenous Ino, Guo and Urd showed anticonvulsant/antiepileptic effects (e.g., in quinolinic acid - induced seizures and in different epilepsy models such as hippocampal kindling models), and (ii) there is a need to generate new and more effective antiepileptic drugs for the treatment of drug-resistant epilepsies, our knowledge about antiepileptic influence of non-Ado nucleosides is far from complete. Thus, in this review article, we give a short summary of anticonvulsant/antiepileptic effects and mechanisms evoked by Ino, Guo, and Urd. Finally, we discuss some non-Ado nucleoside derivatives and their structures, which may be candidates as potential antiepileptic agents.


Assuntos
Anticonvulsivantes/farmacologia , Nucleosídeos/farmacologia , Adenosina/química , Adenosina/farmacologia , Animais , Anticonvulsivantes/química , Guanosina/química , Guanosina/farmacologia , Humanos , Inosina/química , Inosina/farmacologia , Nucleosídeos/química , Uridina/química , Uridina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA