Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pulm Circ ; 6(3): 360-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27683613

RESUMO

Epoxyeicosatrienoicacids (EETs), synthesized from arachidonic acid by epoxygenases of the CYP2C and CYP2J gene subfamilies, contribute to hypoxic pulmonary vasoconstriction (HPV) in mice. Despite their roles in HPV, it is controversial whether EETs mediate or ameliorate pulmonary hypertension (PH). A recent study showed that deficiency of Cyp2j did not protect male and female mice from hypoxia-induced PH. Since CYP2C44 is a functionally important epoxygenase, we hypothesized that knockout of the Cyp2c44 gene would protect both sexes of mice from hypoxia-induced PH. We tested this hypothesis in wild-type (WT) and Cyp2c44 knockout (Cyp2c44 (-/-)) mice exposed to normoxia (room air) and hypoxia (10% O2) for 5 weeks. Exposure of WT and Cyp2c44 (-/-) mice to hypoxia resulted in pulmonary vascular remodeling, increased pulmonary artery resistance, and decreased cardiac function in both sexes. However, in female Cyp2c44 (-/-) mice, compared with WT mice, (1) pulmonary artery resistance and right ventricular hypertrophy were greater, (2) cardiac index was lower, (3) left ventricular and arterial stiffness were higher, and (4) plasma aldosterone levels were higher, but (5) there was no difference in levels of EET in lungs and heart. Paradoxically and unexpectedly, we found that Cyp2c44 disruption exacerbated hypoxia-induced PH in female but not male mice. We attribute exacerbated PH in female Cyp2c44 (-/-) mice to elevated aldosterone and as-yet-unknown systemic factors. Therefore, we suggest a role for the human CYP2C genes in protecting women from severe PH and that this could be one of the underlying causes for a better 5-year survival rate in women than in men.

2.
Am J Physiol Heart Circ Physiol ; 310(9): H1107-17, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26921441

RESUMO

20-Hydroxyeicosatetraeonic acid (20-HETE) produced by cytochrome P-450 monooxygenases in NADPH-dependent manner is proinflammatory, and it contributes to the pathogenesis of systemic and pulmonary hypertension. In this study, we tested the hypothesis that inhibition of glucose-6-phosphate dehydrogenase (G6PD), a major source of NADPH in the cell, prevents 20-HETE synthesis and 20-HETE-induced proinflammatory signaling that promotes secretory phenotype of vascular smooth muscle cells. Lipidomic analysis indicated that G6PD inhibition and knockdown decreased 20-HETE levels in pulmonary arteries as well as 20-HETE-induced 1) mitochondrial superoxide production, 2) activation of mitogen-activated protein kinase 1 and 3, 3) phosphorylation of ETS domain-containing protein Elk-1 that activate transcription of tumor necrosis factor-α gene (Tnfa), and 4) expression of tumor necrosis factor-α (TNF-α). Moreover, inhibition of G6PD increased protein kinase G1α activity, which, at least partially, mitigated superoxide production and Elk-1 and TNF-α expression. Additionally, we report here for the first time that 20-HETE repressed miR-143, which suppresses Elk-1 expression, and miR-133a, which is known to suppress synthetic/secretory phenotype of vascular smooth muscle cells. In summary, our findings indicate that 20-HETE elicited mitochondrial superoxide production and promoted secretory phenotype of vascular smooth muscle cells by activating MAPK1-Elk-1, all of which are blocked by inhibition of G6PD.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Ácidos Hidroxieicosatetraenoicos/metabolismo , Inflamação/prevenção & controle , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Superóxidos/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Bovinos , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Citocromo P-450 CYP4A/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genótipo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Inflamação/enzimologia , Inflamação/genética , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Mutantes , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias Musculares/enzimologia , Músculo Liso Vascular/enzimologia , Mutação , Miócitos de Músculo Liso/enzimologia , Fenótipo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/enzimologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 310(8): L772-83, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26895643

RESUMO

In response to hypoxia, the pulmonary artery normally constricts to maintain optimal ventilation-perfusion matching in the lung, but chronic hypoxia leads to the development of pulmonary hypertension. The mechanisms of sustained hypoxic pulmonary vasoconstriction (HPV) remain unclear. The aim of this study was to determine the role of gap junctions (GJs) between smooth muscle cells (SMCs) in the sustained HPV development and involvement of arachidonic acid (AA) metabolites in GJ-mediated signaling. Vascular tone was measured in bovine intrapulmonary arteries (BIPAs) using isometric force measurement technique. Expression of contractile proteins was determined by Western blot. AA metabolites in the bath fluid were analyzed by mass spectrometry. Prolonged hypoxia elicited endothelium-independent sustained HPV in BIPAs. Inhibition of GJs by 18ß-glycyrrhetinic acid (18ß-GA) and heptanol, nonspecific blockers, and Gap-27, a specific blocker, decreased HPV in deendothelized BIPAs. The sustained HPV was not dependent on Ca(2+) entry but decreased by removal of Ca(2+) and by Rho-kinase inhibition with Y-27632. Furthermore, inhibition of GJs decreased smooth muscle myosin heavy chain (SM-MHC) expression and myosin light chain phosphorylation in BIPAs. Interestingly, inhibition of 15- and 20-hydroxyeicosatetraenoic acid (HETE) synthesis decreased HPV in deendothelized BIPAs. 15-HETE- and 20-HETE-stimulated constriction of BIPAs was inhibited by 18ß-GA and Gap-27. Application of 15-HETE and 20-HETE to BIPAs increased SM-MHC expression, which was also suppressed by 18ß-GA and by inhibitors of lipoxygenase and cytochrome P450 monooxygenases. More interestingly, 15,20-dihydroxyeicosatetraenoic acid and 20-OH-prostaglandin E2, novel derivatives of 20-HETE, were detected in tissue bath fluid and synthesis of these derivatives was almost completely abolished by 18ß-GA. Taken together, our novel findings show that GJs between SMCs are involved in the sustained HPV in BIPAs, and 15-HETE and 20-HETE, through GJs, appear to mediate SM-MHC expression and contribute to the sustained HPV development.


Assuntos
Junções Comunicantes/fisiologia , Ácidos Hidroxieicosatetraenoicos/farmacologia , Miócitos de Músculo Liso/fisiologia , Vasoconstrição , Animais , Bovinos , Hipóxia Celular , Células Cultivadas , Células Endoteliais , Junções Comunicantes/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Artéria Pulmonar/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA