Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 878: 162848, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36931522

RESUMO

In this study, effect of nitrate-dependent suberization in maize root on cadmium (Cd) uptake and accumulation was investigated. Suberization in maize roots was significantly lower in plants grown with a high nitrate supply compared with low nitrate. This decrease was seen in the total amount of suberin, in which the aliphatic suberin amount was significantly decreased, whereas no difference in aromatic suberin content between different N-treatments. RNA-sequencing showed that suberin biosynthesis genes were upregulated in low nitrate treatment, which correlated well with the increased suberin content. Bioimaging and xylem sap analysis showed that reduced exodermal and endodermal suberization in roots of plants grown under high nitrate promoted radial Cd transport along the crown root. The enhanced suberization in crown roots of plants grown in low nitrate restricted the radial transport of Cd from epidermis to cortex via decreased accessibility to Cd related transporters at the plasmalemma. Also, under low nitrate supply, the Cd transport gene ZmNramp5 was upregulated in the crown root, which may enhance Cd uptake by root tip where exodermis and endodermis were not fully suberized. These results suggest that high nitrate supply enhances Cd uptake and radial transport in maize roots by reducing exodermal and endodermal suberization.


Assuntos
Cádmio , Nitratos , Cádmio/farmacologia , Nitratos/farmacologia , Zea mays , Raízes de Plantas , Transporte Biológico
2.
J Adv Res ; 53: 33-47, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36529351

RESUMO

INTRODUCTIONS: Ethylene regulates ripening by activating various metabolic pathways that controlcolor, aroma, flavor, texture, and consequently, the quality of fruits. However, the modulation of ethylene biosynthesis and quality formation during banana fruit ripening remains unclear. OBJECTIVES: The present study aimed to identify the regulatory module that regulates ethylene and fruit quality-related metabolisms during banana fruit ripening. METHODS: We used RNA-seq to compare unripe and ripe banana fruits and identified a ripening-induced NAC transcription factor, MaNAC029. We further performed DNA affinity purification sequencing to identify the MaNAC029's target genes involved in ethylene biosynthesis and fruit quality formation, and electrophoretic mobility shift assay, chromatin immunoprecipitation with real-time polymerase chain reaction and dual luciferase assays to explore the underlying regulatory mechanisms. Immunoprecipitation combined with mass spectrometry, yeast two-hybrid assay, and bimolecular fluorescence complementation assay were used to screen and verify the proteins interacting with MaNAC029. Finally, the function of MaNAC029 and its interacting protein associated with ethylene biosynthesis and quality formation was verified through transient overexpression experiments in banana fruits. RESULTS: The study identified a nucleus-localized, ripening-induced NAC transcription factor MaNAC029. It transcriptionally activated genes associated with ethylene biosynthesis and a variety of cellular metabolisms related to fruit quality formation (cell wall degradation, starch degradation, aroma compound synthesis, and chlorophyll catabolism) by directly modulating their promoter activity during ripening. Overexpression of MaNAC029 in banana fruits activated ethylene biosynthesis and accelerated fruit ripening and quality formation. Notably, the E3 ligase MaXB3 interacted with and ubiquitinated MaNAC029 protein, facilitating MaNAC029 proteasomal degradation. Consistent with this finding, MaXB3 overexpression attenuated MaNAC029-enhanced ethylene biosynthesis and quality formation. CONCLUSION: Our findings demonstrate that a MaXB3-MaNAC029 module regulates ethylene biosynthesis and a series of cellular metabolisms related to fruit quality formation during banana ripening. These results expand the understanding of the transcriptional and post-translational mechanisms of fruit ripening and quality formation.


Assuntos
Musa , Musa/genética , Musa/metabolismo , Frutas/genética , Frutas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia
3.
Environ Pollut ; 289: 117881, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352630

RESUMO

Magnesium (Mg) is one of essential plant nutrients needed for optimal growth, yield and quality formation. Also, soil application of Mg fertilizer has been shown to be an effective approach to improve vegetable Mg nutrition. Leafy vegetables can accumulate relatively high levels of heavy metals in the above-ground plant parts. However, it remains unclear as to whether soil-applied Mg affects the vegetable nutritional quality and human health risk of heavy metals from field-grown Chinese cabbage. Here we conducted a two-year, two-crop cycle field experiment in south-western China to evaluate crop yield, vegetable nutrition and heavy metal accumulation in Chinese cabbage supplied with varying levels of Mg (0-90 kg ha-1). Soil application of Mg did not increase the cabbage yield. However, it did increase the vegetable vitamin C and water-soluble protein content by 20.0 % and 57.9 % with 45 and 22.5 kg Mg ha-1 application, respectively, compared to control. The nitrate content of Mg-supplied (45 kg ha-1) cabbages was significantly lower, by about 14 %, than the control. Further, it also significantly decreased the accumulation of cadmium and nickel in the above-ground tissues by reducing their uptake from soil to root or their translocation from root to shoot. Magnesium application, however, increased chromium uptake. A human health risks assessment nonetheless showed that the contribution of chromium from Mg-supplied plants to threshold hazard quotient and threshold carcinogenic risk were indeed much lower than that of cadmium and nickel, proving the value of crop Mg supplementation for ameliorating non-carcinogenic and carcinogenic risks to humans with the consumption of Chinese cabbage. Here we show that soil application of Mg in the range of 22.5-45 kg ha-1 to Chinese cabbage will significantly improve its nutritional qualities and alleviate the potential human health risks of heavy metals associated with Chinese cabbage consumption.


Assuntos
Brassica , Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Humanos , Magnésio , Metais Pesados/análise , Valor Nutritivo , Poluentes do Solo/análise
4.
BMC Plant Biol ; 19(1): 285, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253103

RESUMO

BACKGROUND: Sugarcane is a major crop producing about 80% of sugar globally. Increasing sugar content is a top priority for sugarcane breeding programs worldwide, however, the progress is extremely slow. Owing to its commercial significance, the physiology of sucrose accumulation has been studied extensively but it did not lead to any significant practical outcomes. Recent molecular studies are beginning to recognize genes and gene networks associated with this phenomenon. To further advance our molecular understanding of sucrose accumulation, we altered sucrose content of sugarcane genotypes with inherently large variation for sucrose accumulation using a sugarcane ripener, ethylene, and studied their transcriptomes to identify genes associated with the phenomenon. RESULTS: Sucrose content variation in the experimental genotypes was substantial, with the top-performing clone producing almost 60% more sucrose than the poorest performer. Ethylene treatment increased stem sucrose content but that occurred only in low-sugar genotype. Transcriptomic analyses have identified about 160,000 unigenes of which 86,000 annotated genes were classified into functional groups associated with carbohydrate metabolism, signaling, localization, transport, hydrolysis, growth, catalytic activity, membrane and storage, suggesting the structural and functional specification, including sucrose accumulation, occurring in maturing internodes. About 25,000 genes were differentially expressed between all genotypes and treatments combined. Genotype had a dominant effect on differential gene expression than ethylene treatment. Sucrose and starch metabolism genes were more responsive to ethylene treatment in low-sugar genotype. Ethylene caused differential gene expression of many stress-related transcription factors, carbohydrate metabolism, hormone metabolism and epigenetic modification. Ethylene-induced expression of ethylene-responsive transcription factors, cytosolic acid- and cell wall-bound invertases, and ATPase was more pronounced in low- than in high-sugar genotype, suggesting an ethylene-stimulated sink activity and consequent increased sucrose accumulation in low-sugar genotype. CONCLUSION: Ethylene-induced sucrose accumulation is more pronounced in low-sugar sugarcane genotype, and this is possibly achieved by the preferential activation of genes such as invertases that increase sink strength in the stem. The relatively high enrichment of differentially expressed genes associated with hormone metabolism and signaling and stress suggests a strong hormonal regulation of source-sink activity, growth and sucrose accumulation in sugarcane.


Assuntos
Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Saccharum/fisiologia , Sacarose/metabolismo , Genótipo , Saccharum/crescimento & desenvolvimento , Transcriptoma
5.
J Pineal Res ; 67(1): e12570, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30897243

RESUMO

Melatonin and abscisic acid (ABA) play contrasting roles in regulating leaf senescence in plants. The molecular mechanism underlying the interaction between melatonin and ABA involved in leaf senescence, however, remains poorly defined. Herein, we found that exogenous application of melatonin delayed the senescence of Chinese flowering cabbage, accompanied by reduced expression of chlorophyll catabolic and ABA biosynthetic genes, and a lower endogenous ABA level. Significantly, three nucleus-localized transcriptional activators BrABF1, BrABF4, and BrABI5 were identified, and their expressions were repressed by melatonin. In vitro and in vivo binding experiments revealed that BrABF1, BrABF4, and BrABI5 activated the transcription of a series of ABA biosynthetic and chlorophyll catabolic genes by physically binding to their promoters. Moreover, transient over-expression of BrABF1, BrABF4, and BrABI5 in tobacco leaves induced ABA accumulation and promoted chlorophyll degradation by upregulating tobacco ABA biosynthetic and chlorophyll catabolic genes, resulting in the accelerated leaf senescence. These effects were significantly attenuated by melatonin treatment. Our findings suggest that melatonin-mediated inhibition of leaf senescence involves suppression of ABFs-mediated ABA biosynthesis and chlorophyll degradation. Unraveling of the molecular regulatory mechanism of leaf senescence controlled by ABA and melatonin expands our understanding of the regulation of this phenomenon and offers potentially more effective molecular breeding strategies for extending the shelf-life of Chinese flowering cabbage.


Assuntos
Ácido Abscísico/metabolismo , Brassica rapa/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Melatonina/farmacologia , Folhas de Planta/metabolismo , Melatonina/metabolismo , Proteínas de Plantas/biossíntese , Fatores de Transcrição/biossíntese , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
Front Genet ; 10: 1326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117408

RESUMO

Drought and cold stresses are the main environmental factors that affect the yield of sugarcane, and DREB genes play very important roles in tolerance to drought, cold, and other environmental stresses. In this study, bioinformatics analysis was performed to characterize Saccharum spontaneum SsDREB genes. RNA sequencing (RNA-seq) was used to detect the expression profiles of SsDREBs induced by cold and drought stresses. According to our results, there are 110 SsDREB subfamily proteins in S. spontaneum, which can be classified into six groups; 106 of these genes are distributed among 29 chromosomes. Inter- and intraspecies synteny analyses suggested that all DREB groups have undergone gene duplication, highlighting the polyploid events that played an important role in the expansion of the DREB subfamily. Furthermore, RNA-seq results showed that 45 SsDREBs were up- or downregulated under cold stress; 35 of them were found to be involved in responding to drought stress. According to protein-protein interaction analysis, SsDREB100, SsDREB102, and SsDREB105 play key roles during the response to cold stress. These results reveal that functional divergence exists between collinear homologous genes or among common origin genes in the DREB subfamily of S. spontaneum. This study presents a comprehensive analysis and systematic understanding of the precise mechanism of SsDREBs in response to abiotic stress and will lead to improvements in sugarcane.

7.
J Exp Bot ; 67(3): 861-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26628517

RESUMO

Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (-0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology.


Assuntos
Gases/metabolismo , Variação Genética , Folhas de Planta/genética , Folhas de Planta/parasitologia , Transpiração Vegetal/genética , Saccharum/genética , Saccharum/fisiologia , Biomassa , Dióxido de Carbono/metabolismo , Umidade , Fenótipo , Fotossíntese/genética , Característica Quantitativa Herdável , Sementes/genética , Temperatura
9.
BMJ Case Rep ; 20142014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25406225

RESUMO

Macrodystrophia lipomatosa (MDL), a rare non-hereditary congenital disorder of localised gigantism, is characterised by progressive proliferation of all mesenchymal elements, with a disproportionate increase in fibroadipose tissue. We report a case of a 19-year-old man who presented with a history of painless enlargement of the left upper limb since childhood, which was gradually increasing in size and predominantly involving the radial aspect of the upper limb with relative sparing of the ulnar aspect. The patient was imaged with X-ray and MRI. Imaging and clinical features were classical of MDL. The patient underwent stage 1 reduction plasty of the left forearm; preoperative and histopathological findings confirmed the preoperative diagnosis.


Assuntos
Tecido Adiposo/patologia , Braço/patologia , Gigantismo , Lipomatose , Adulto , Braço/cirurgia , Gigantismo/cirurgia , Humanos , Lipomatose/cirurgia , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
10.
AJR Am J Roentgenol ; 203(5): 1001-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25341137

RESUMO

OBJECTIVE: The purpose of this study was to compare the in vitro effects of date syrup with those of other contrast agents by qualitative and quantitative analysis and in vivo evaluation of the use of date syrup to improve the quality of MRCP images. MATERIALS AND METHODS: Phantoms containing date syrup, ferumoxsil, pineapple juice, and water were imaged by 1.5-T MRI with T2-weighted and MRCP sequences, and signal-to-noise ratios were calculated. Biochemical analysis of date syrup was performed to find the nature of iron in it, and the iron content was quantified by energy-dispersive x-ray spectroscopy. Sixty patients underwent MRCP before and 30 minutes after ingestion of 100 mL of date syrup. Unenhanced and contrast-enhanced images were scored for gastrointestinal tract signal suppression and visualization of various pancreaticobiliary structures. RESULTS: In vitro evaluation showed that images obtained with date syrup had a signal-to-noise ratio comparable to that of images obtained with ferumoxsil in T2-weighted and MRCP sequences. The iron concentration in date syrup was 2.6 mg/dL, and it was in ferric form. Images obtained after oral contrast administration had statistically significant improvement in gastrointestinal tract signal suppression (p < 0.001) and an increase in visibility of the common bile duct, cystic duct, and pancreatic duct (all p < 0.001). No adverse effects were noted in any of the patients. CONCLUSION: Date syrup can be used as a negative oral contrast agent for gastrointestinal tract signal suppression during MRCP and for improving visualization of various pancreaticobiliary structures.


Assuntos
Bebidas , Ductos Biliares/anatomia & histologia , Colangiopancreatografia por Ressonância Magnética/métodos , Ductos Pancreáticos/anatomia & histologia , Phoeniceae/química , Extratos Vegetais/administração & dosagem , Administração Oral , Colangiopancreatografia por Ressonância Magnética/instrumentação , Meios de Contraste/administração & dosagem , Frutas , Humanos , Aumento da Imagem/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
BMJ Case Rep ; 20142014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24671325

RESUMO

Splenogonadal fusion is a rare congenital anomaly. We present the case of a 6-year-old boy who presented with a left inguinoscrotal swelling. With a clinical diagnosis of left congenital inguinal hernia the patient was taken up for explorative laparotomy where a transperitoneal band was noted adherent to the left testis. Biopsy revealed normal splenic tissue. Postoperatively the boy was imaged and a diagnosis of splenogonadal fusion was made. This article illustrates the imaging features of this rare anomaly.


Assuntos
Hérnia Inguinal/congênito , Baço/anormalidades , Testículo/anormalidades , Criança , Diagnóstico Diferencial , Hérnia Inguinal/diagnóstico , Hérnia Inguinal/diagnóstico por imagem , Hérnia Inguinal/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Baço/diagnóstico por imagem , Testículo/diagnóstico por imagem , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA