Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 15(3): 960-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26831523

RESUMO

The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Deleção de Genes , Redes Reguladoras de Genes , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Ontologia Genética , Genoma Fúngico , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Nat Commun ; 6: 7108, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25964121

RESUMO

INO80-C and SWR-C are conserved members of a subfamily of ATP-dependent chromatin remodelling enzymes that function in transcription and genome-maintenance pathways. A crucial role for these enzymes is to control chromosomal distribution of the H2A.Z histone variant. Here we use electron microscopy (EM) and two-dimensional class averaging to demonstrate that these remodelling enzymes have similar overall architectures. Each enzyme is characterized by a dynamic 'tail' domain and a compact 'head' that contains Rvb1/Rvb2 subunits organized as hexameric rings. EM class averages and mass spectrometry support the existence of single heterohexameric rings in both SWR-C and INO80-C. EM studies define the position of the Arp8/Arp4/Act1 module within INO80-C, and we find that this module enhances nucleosome-binding affinity but is largely dispensable for remodelling activities. In contrast, the Ies6/Arp5 module is essential for INO80-C remodelling, and furthermore this module controls conformational changes that may couple nucleosome binding to remodelling.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Imagem Molecular , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Cell Proteomics ; 13(6): 1510-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24722732

RESUMO

The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBß, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.


Assuntos
Mapas de Interação de Proteínas/genética , Proteômica , Fator de Transcrição RelA/biossíntese , Fatores de Transcrição/biossíntese , Citoplasma/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Espectrometria de Massas , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/genética
4.
Nat Commun ; 4: 2327, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23995836

RESUMO

Sirtuin enzymes regulate metabolism and aging processes through deacetylation of acetyl-lysines in target proteins. More than 6,800 mammalian acetylation sites are known, but few targets have been assigned to most sirtuin isoforms, hampering our understanding of sirtuin function. Here we describe a peptide microarray system displaying 6,802 human acetylation sites for the parallel characterisation of their modification by deacetylases. Deacetylation data for all seven human sirtuins obtained with this system reveal isoform-specific substrate preferences and deacetylation substrate candidates for all sirtuin isoforms, including Sirt4. We confirm malate dehydrogenase protein as a Sirt3 substrate and show that peroxiredoxin 1 and high-mobility group B1 protein are deacetylated by Sirt5 and Sirt1, respectively, at the identified sites, rendering them likely new in vivo substrates. Our microarray platform enables parallel studies on physiological acetylation sites and the deacetylation data presented provide an exciting resource for the identification of novel substrates for all human sirtuins.


Assuntos
Peptídeos/metabolismo , Análise Serial de Proteínas , Proteoma/metabolismo , Sirtuínas/metabolismo , Acetilação , Sequência de Aminoácidos , Sítios de Ligação , Ensaio de Imunoadsorção Enzimática , Fluorescência , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteoma/química , Transdução de Sinais , Sirtuínas/química , Especificidade por Substrato
5.
Biosci Rep ; 33(3)2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548308

RESUMO

Sirtuins are NAD+-dependent protein deacetylases regulating metabolism, stress responses and ageing processes. Among the seven mammalian Sirtuins, Sirt1 is the physiologically best-studied isoform. It regulates nuclear functions such as chromatin remodelling and gene transcription, and it appears to mediate beneficial effects of a low calorie diet which can partly be mimicked by the Sirt1 activating polyphenol resveratrol. The molecular details of Sirt1 domain architecture and regulation, however, are little understood. It has a unique N-terminal domain and CTD (C-terminal domain) flanking a conserved Sirtuin catalytic core and these extensions are assumed to mediate Sirt1-specific features such as homo-oligomerization and activation by resveratrol. To analyse the architecture of human Sirt1 and functions of its N- and C-terminal extensions, we recombinantly produced Sirt1 and Sirt1 deletion constructs as well as the AROS (active regulator of Sirt1) protein. We then studied Sirt1 features such as molecular size, secondary structure and stimulation by small molecules and AROS. We find that Sirt1 is monomeric and has extended conformations in its flanking domains, likely disordered especially in the N-terminus, resulting in an increased hydrodynamic radius. Nevertheless, both termini increase Sirt1 deacetylase activity, indicating a regulatory function. We also find an unusual but defined conformation for AROS protein, which fails, however, to stimulate Sirt1. Resveratrol, in contrast, activates the Sirt1 catalytic core independent of the terminal domains, indicating a binding site within the catalytic core and suggesting that small molecule activators for other isoforms might also exist.


Assuntos
Proteínas Nucleares/metabolismo , Sirtuína 1/química , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/efeitos dos fármacos , Clonagem Molecular , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Humanos , Proteínas Nucleares/química , Conformação Proteica , Resveratrol , Deleção de Sequência , Sirtuína 1/genética , Fatores de Transcrição/química
6.
Exp Gerontol ; 46(2-3): 174-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20849945

RESUMO

Advances in research on mitochondria have elucidated their importance in cell survival and cell death regulation in addition to their function in energy production. Mitochondria are further implicated in various metabolic and aging-related diseases, which are now assumed to be caused by misregulation of physiological systems rather than pure accumulation of oxidative damage. Thus, the signaling mechanisms within mitochondria and between the organelle and its environment have gained interest as potential drug targets. Emerging mitochondrial signaling systems with potential for exploiting them for therapeutic intervention include, among others, the NAD(+)-dependent protein deacetylases of the Sirtuin family, the redox enzyme p66(Shc), and enzymes of the cyclic adenosine monophosphate (cAMP) signaling pathways. Here, we discuss functions of these signaling systems in mitochondria, their roles in aging processes and disease, and their potential to serve as therapeutic targets.


Assuntos
Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Animais , Humanos , Oxirredução , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Sirtuínas/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
7.
J Biol Chem ; 285(38): 29651-61, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20630867

RESUMO

Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 Å. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys(101)) that is required for catalysis and interacts with Asp(17), Thr(102), and an ordered water molecule in the active site. Asp(17) has carboxylic acid bond lengths that are consistent with protonation, and we propose that it activates the ordered water molecule to hydrate organic isocyanides. In contrast to Cys(101) and Asp(17), Thr(102) is tolerant of mutagenesis, and the T102V mutation results in a substrate-inhibited enzyme. Although ICH is similar to human DJ-1 (1.6 Å C-α root mean square deviation), structural differences in the vicinity of Cys(101) disfavor the facile oxidation of this residue that is functionally important in human DJ-1 but would be detrimental to ICH activity. The ICH active site region also exhibits surprising conformational plasticity and samples two distinct conformations in the crystal. ICH represents a previously uncharacterized clade of the DJ-1 superfamily that possesses a novel enzymatic activity, demonstrating that the DJ-1 core fold can evolve diverse functions by subtle modulation of the environment of a conserved, reactive cysteine residue.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cianetos/metabolismo , Cisteína/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Pseudomonas fluorescens/enzimologia , Proteínas de Bactérias/genética , Cristalografia por Raios X , Cisteína/química , Evolução Molecular , Hidroliases/genética , Mutação
8.
J Biol Chem ; 284(10): 6476-85, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19124468

RESUMO

The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.


Assuntos
Cisteína/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Oncogênicas/metabolismo , Ácidos Sulfínicos/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Cisteína/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas Mitocondriais/genética , Mutação , Proteínas Oncogênicas/genética , Oxirredução , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1
9.
Biochemistry ; 47(28): 7430-40, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18570440

RESUMO

Human DJ-1, a disease-associated protein that protects cells from oxidative stress, contains an oxidation-sensitive cysteine (C106) that is essential for its cytoprotective activity. The origin of C106 reactivity is obscure, due in part to the absence of an experimentally determined p K a value for this residue. We have used atomic-resolution X-ray crystallography and UV spectroscopy to show that C106 has a depressed p K a of 5.4 +/- 0.1 and that the C106 thiolate accepts a hydrogen bond from a protonated glutamic acid side chain (E18). X-ray crystal structures and cysteine p K a analysis of several site-directed substitutions at residue 18 demonstrate that the protonated carboxylic acid side chain of E18 is required for the maximal stabilization of the C106 thiolate. A nearby arginine residue (R48) participates in a guanidinium stacking interaction with R28 from the other monomer in the DJ-1 dimer and elevates the p K a of C106 by binding an anion that electrostatically suppresses thiol ionization. Our results show that the ionizable residues (E18, R48, and R28) surrounding C106 affect its p K a in a way that is contrary to expectations based on the typical ionization behavior of glutamic acid and arginine. Lastly, a search of the Protein Data Bank (PDB) produces several candidate hydrogen-bonded aspartic/glutamic acid-cysteine interactions, which we propose are particularly common in the DJ-1 superfamily.


Assuntos
Cisteína/metabolismo , Ácido Glutâmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Cristalização , Bases de Dados Genéticas , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/isolamento & purificação , Modelos Moleculares , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/isolamento & purificação , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Conformação Proteica , Proteína Desglicase DJ-1 , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Difração de Raios X
10.
Biochemistry ; 47(5): 1381-92, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18181649

RESUMO

A number of missense mutations in the oxidative stress response protein DJ-1 are implicated in rare forms of familial Parkinsonism. The best-characterized Parkinsonian DJ-1 missense mutation, L166P, disrupts homodimerization and results in a poorly folded protein. The molecular basis by which the other Parkinsonism-associated mutations disrupt the function of DJ-1, however, is incompletely understood. In this study we show that three different Parkinsonism-associated DJ-1 missense mutations (A104T, E163K, and M26I) reduce the thermal stability of DJ-1 in solution by subtly perturbing the structure of DJ-1 without causing major folding defects or loss of dimerization. Atomic resolution X-ray crystallography shows that the A104T substitution introduces water and a discretely disordered residue into the core of the protein, E163K disrupts a key salt bridge with R145, and M26I causes packing defects in the core of the dimer. The deleterious effect of each Parkinsonism-associated mutation on DJ-1 is dissected by analysis of engineered substitutions (M26L, A104V, and E163K/R145E) that partially alleviate each of the defects introduced by the A104T, E163K and M26I mutations. In total, our results suggest that the protective function of DJ-1 can be compromised by diverse perturbations in its structural integrity, particularly near the junctions of secondary structural elements.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Dimerização , Humanos , Ligação de Hidrogênio , Mutação de Sentido Incorreto , Transtornos Parkinsonianos/genética , Proteína Desglicase DJ-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA