Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Trends Pharmacol Sci ; 44(6): 335-353, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37069041

RESUMO

Specific RNA sequences modified by a methylated adenosine, N6-methyladenosine (m6A), contribute to the post-transcriptional regulation of gene expression. The quantity of m6A in RNA is orchestrated by enzymes that write and erase it, while its effects are mediated by proteins that bind to read this modification. Dysfunction of this post-transcriptional regulatory process has been linked to human disease. Although the initial focus has been on pharmacological targeting of the writer and eraser enzymes, interest in the reader proteins has been challenged by a lack of clear understanding of their functional roles and molecular mechanisms of action. Readers of m6A-modified RNA (m6A-RNA) - the YTH (YT521-B homology) domain-containing protein family paralogs 1-3 (YTHDF1-3, referred to here as DF1-DF3) - are emerging as therapeutic targets as their links to pathological processes such as cancer and inflammation and their roles in regulating m6A-RNA fate become clear. We provide an updated understanding of the modes of action of DF1-DF3 and review their structures to unlock insights into drug design approaches for DF paralog-selective inhibition.


Assuntos
Regulação da Expressão Gênica , RNA , Humanos , RNA/química , RNA/metabolismo , Proteínas/metabolismo
2.
Cells ; 11(10)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626737

RESUMO

LACTB is a relatively unknown mitochondrial protein structurally related to the bacterial penicillin-binding and beta-lactamase superfamily of serine proteases. LACTB has recently gained an increased interest due to its potential role in lipid metabolism and tumorigenesis. To date, around ninety studies pertaining to LACTB have been published, but the exact biochemical and cell biological function of LACTB still remain elusive. In this review, we summarise the current knowledge about LACTB with particular attention to the implications of the recently published study on the cryo-electron microscopy structure of the filamentous form of LACTB. From this and other studies, several specific properties of LACTB emerge, suggesting that the protein has distinct functions in different physiological settings. Resolving these issues by further research may ultimately lead to a unified model of LACTB's function in cell and organismal physiology. LACTB is the only member of its protein family in higher animals and LACTB may, therefore, be of particular interest for future drug targeting initiatives.


Assuntos
Proteínas Mitocondriais , Neoplasias , Animais , Microscopia Crioeletrônica , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205699

RESUMO

Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.


Assuntos
Epigênese Genética , Epigenômica/métodos , Isquemia Miocárdica/metabolismo , RNA/metabolismo , Transcriptoma , Biomarcadores , Estudos de Casos e Controles , Humanos , Projetos de Pesquisa
4.
Dis Model Mech ; 14(2)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33408083

RESUMO

Activin/myostatin signalling acts to induce skeletal muscle atrophy in adult mammals by inhibiting protein synthesis as well as promoting protein and organelle turnover. Numerous strategies have been successfully developed to attenuate the signalling properties of these molecules, which result in augmenting muscle growth. However, these molecules, in particular activin, play major roles in tissue homeostasis in numerous organs of the mammalian body. We have recently shown that although the attenuation of activin/myostatin results in robust muscle growth, it also has a detrimental impact on the testis. Here, we aimed to discover the long-term consequences of a brief period of exposure to muscle growth-promoting molecules in the testis. We demonstrate that muscle hypertrophy promoted by a soluble activin type IIB ligand trap (sActRIIB) is a short-lived phenomenon. In stark contrast, short-term treatment with sActRIIB results in immediate impact on the testis, which persists after the sessions of the intervention. Gene array analysis identified an expansion in aberrant gene expression over time in the testis, initiated by a brief exposure to muscle growth-promoting molecules. The impact on the testis results in decreased organ size as well as quantitative and qualitative impact on sperm. Finally, we have used a drug-repurposing strategy to exploit the gene expression data to identify a compound - N6-methyladenosine - that may protect the testis from the impact of the muscle growth-promoting regime. This work indicates the potential long-term harmful effects of strategies aimed at promoting muscle growth by attenuating activin/myostatin signalling. Furthermore, we have identified a molecule that could, in the future, be used to overcome the detrimental impact of sActRIIB treatment on the testis.


Assuntos
Receptores de Activinas Tipo II/genética , Subunidades beta de Inibinas/genética , Miostatina/genética , Testículo/anormalidades , Testículo/efeitos dos fármacos , Receptores de Activinas Tipo II/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Peso Corporal , Biologia Computacional , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Subunidades beta de Inibinas/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Fenótipo , Análise de Componente Principal , Transdução de Sinais , Fatores de Tempo
5.
Eur J Transl Myol ; 30(1): 8737, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499882

RESUMO

Numerous approaches are being developed to promote post-natal muscle growth based on attenuating Myostatin/Activin signalling for clinical uses such as the treatment neuromuscular diseases, cancer cachexia and sarcopenia. However there have been concerns about the effects of inhibiting Activin on tissues other than skeletal muscle. We intraperitoneally injected mice with the Activin ligand trap, sActRIIB, in young, adult and a progeric mouse model. Treatment at any stage in the life of the mouse rapidly increased muscle mass. However at all stages of life the treatment decreased the weights of the testis. Not only were the testis smaller, but they contained fewer sperm compared to untreated mice. We found that the hypertrophic muscle phenotype was lost after the cessation of sActRIIB treatment but abnormal testis phenotype persisted. In summary, attenuation of Myostatin/Activin signalling inhibited testis development. Future use of molecules based on a similar mode of action to promote muscle growth should be carefully profiled for adverse side-effects on the testis. However the effectiveness of sActRIIB as a modulator of Activin function provides a possible therapeutic strategy to alleviate testicular seminoma development.

6.
iScience ; 23(1): 100790, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31901637

RESUMO

USP14 is a deubiquitinating enzyme associated with the proteasome important for protein degradation. Here we show that upon proteasome inhibition or expression of the mutant W58A-USP14, association of USP14 with the 19S regulatory particle is disrupted. MS-based interactomics revealed an interaction of USP14 with the chaperone, HSC70, in neuroblastoma cells. Proteasome inhibition enhanced binding of USP14 to HSC70, and to XBP1u and IRE1α proteins, demonstrating a role in the unfolded protein response. Striatal neurons expressing mutant huntingtin exhibited reduced USP14 and HSC70 levels, whereas inhibition of HSC70 downregulated USP14. Furthermore, proteasome inhibition or use of the mutant W58A-USP14 facilitated the interaction of USP14 with the autophagy protein, GABARAP. Functionally, overexpression of W58A-USP14 increased GABARAP positive autophagosomes in striatal neurons, and this was abrogated using the HSC70 inhibitor, VER-155008. Modulation of the USP14-HSC70 axis may represent a potential therapeutic target in HD to beneficially influence multiple proteostasis pathways.

7.
Front Cell Neurosci ; 14: 569598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390903

RESUMO

CLN1 disease (OMIM #256730) is an inherited neurological disorder of early childhood with epileptic seizures and premature death. It is associated with mutations in CLN1 coding for Palmitoyl-Protein Thioesterase 1 (PPT1), a lysosomal enzyme which affects the recycling and degradation of lipid-modified (S-acylated) proteins by removing palmitate residues. Transcriptomic evidence from a neuronal-like cellular model derived from differentiated SH-SY5Y cells disclosed the potential negative roles of CLN1 overexpression, affecting the elongation of neuronal processes and the expression of selected proteins of the synaptic region. Bioinformatic inquiries of transcriptomic data pinpointed a dysregulated expression of several genes coding for proteins related to voltage-gated ion channels, including subunits of calcium and potassium channels (VGCC and VGKC). In SH-SY5Y cells overexpressing CLN1 (SH-CLN1 cells), the resting potential and the membrane conductance in the range of voltages close to the resting potential were not affected. However, patch-clamp recordings indicated a reduction of Ba2+ currents through VGCC of SH-CLN1 cells; Ca2+ imaging revealed reduced Ca2+ influx in the same cellular setting. The results of the biochemical and morphological investigations of CACNA2D2/α2δ-2, an accessory subunit of VGCC, were in accordance with the downregulation of the corresponding gene and consistent with the hypothesis that a lower number of functional channels may reach the plasma membrane. The combined use of 4-AP and NS-1643, two drugs with opposing effects on Kv11 and Kv12 subfamilies of VGKC coded by the KCNH gene family, provides evidence for reduced functional Kv12 channels in SH-CLN1 cells, consistent with transcriptomic data indicating the downregulation of KCNH4. The lack of compelling evidence supporting the palmitoylation of many ion channels subunits investigated in this study stimulates inquiries about the role of PPT1 in the trafficking of channels to the plasma membrane. Altogether, these results indicate a reduction of functional voltage-gated ion channels in response to CLN1/PPT1 overexpression in differentiated SH-SY5Y cells and provide new insights into the altered neuronal excitability which may underlie the severe epileptic phenotype of CLN1 disease. It remains to be shown if remodeling of such functional channels on plasma membrane can occur as a downstream effect of CLN1 disease.

8.
Eur J Cancer Prev ; 29(3): 238-247, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31567534

RESUMO

Lung cancer is a deadly disease, typically caused by known risk factors, such as tobacco smoke and asbestos exposure. By triggering cellular oxidative stress and altering the antioxidant pathways eliminating reactive oxygen species (ROS), tobacco smoke and asbestos predispose to cancer. Despite easily recognizable high-risk individuals, lung cancer screening and its early detection are hampered by poor diagnostic tools including the absence of proper biomarkers. This study aimed to recognize potential lung cancer biomarkers using induced sputum noninvasively collected from the lungs of individuals in risk of contracting lung cancer. Study groups composed of current and former smokers, who either were significantly asbestos exposed, had lung cancer, or were unexposed and asymptomatic. Screening of potential biomarkers was performed with 52, and five differentially abundant proteins, peroxiredoxin 2 (PRDX2), thioredoxin (TXN), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), extracellular matrix protein 1 (ECM1), and protein S100 A8 (S100A8), were chosen to undergo validation, for their previously known connection with oxidative stress or cancer. Results from the validation in 123 sputa showed that PRDX2, TXN, and GAPDH were differentially abundant in sputa from individuals with lung cancer. TXN had a negative correlation with asbestos exposure, yet a positive correlation with smoking and lung cancer. Thus, tobacco smoking, asbestos exposure, and lung carcinogenesis may disturb the cellular redox state in different ways. A strong correlation was found among PRDX2, TXN, GAPDH, and S100A8, suggesting that these proteins may present a diagnostic biomarker panel to aid recognizing individuals at high risk of contracting lung cancer.


Assuntos
Biomarcadores Tumorais/análise , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/análise , Neoplasias Pulmonares/diagnóstico , Peroxirredoxinas/análise , Tiorredoxinas/análise , Idoso , Amianto/efeitos adversos , Calgranulina A/análise , Detecção Precoce de Câncer/métodos , Ex-Fumantes/estatística & dados numéricos , Proteínas da Matriz Extracelular/análise , Feminino , Finlândia , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Fumantes/estatística & dados numéricos , Fumar/efeitos adversos , Escarro/química
9.
Cell Mol Life Sci ; 77(20): 4093-4115, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31820036

RESUMO

Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.


Assuntos
Vesículas Extracelulares/genética , Proteínas Hedgehog/genética , Hialuronan Sintases/genética , Melanoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Receptores de Hialuronatos/genética , Transdução de Sinais/genética
10.
Am J Physiol Endocrinol Metab ; 316(5): E852-E865, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860875

RESUMO

Cancer-associated cachexia reduces survival, which has been attenuated by blocking the activin receptor type 2B (ACVR2B) ligands in mice. The purpose of this study was to unravel the underlying physiology and novel cachexia biomarkers by use of the colon-26 (C26) carcinoma model of cancer cachexia. Male BALB/c mice were subcutaneously inoculated with C26 cancer cells or vehicle control. Tumor-bearing mice were treated with vehicle (C26+PBS) or soluble ACVR2B either before (C26+sACVR/b) or before and after (C26+sACVR/c) tumor formation. Skeletal muscle and serum metabolomics analysis was conducted by gas chromatography-mass spectrometry. Cancer altered various biologically functional groups representing 1) amino acids, 2) energy sources, and 3) nucleotide-related intermediates. Muscle metabolomics revealed increased content of free phenylalanine in cancer that strongly correlated with the loss of body mass within the last 2 days of the experiment. This correlation was also detected in serum. Decreased ribosomal RNA content and phosphorylation of a marker of pyrimidine synthesis revealed changes in nucleotide metabolism in cancer. Overall, the effect of the experimental C26 cancer predominated over blocking ACVR2B ligands in both muscle and serum. However, the level of methyl phosphate, which was decreased in muscle in cancer, was restored by sACVR2B-Fc treatment. In conclusion, experimental cancer affected muscle and blood metabolomes mostly independently of blocking ACVR2B ligands. Of the affected metabolites, we have identified free phenylalanine as a promising biomarker of muscle atrophy or cachexia. Finally, the decreased capacity for pyrimidine nucleotide and protein synthesis in tumor-bearing mice opens up new avenues in cachexia research.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Caquexia/metabolismo , Neoplasias do Colo/metabolismo , Metaboloma/fisiologia , Músculo Esquelético/metabolismo , Aminoácidos/metabolismo , Animais , Caquexia/etiologia , Linhagem Celular Tumoral , Neoplasias do Colo/complicações , Fragmentos Fc das Imunoglobulinas/farmacologia , Masculino , Redes e Vias Metabólicas , Metaboloma/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Organofosfatos/metabolismo , Fenilalanina/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Nucleotídeos de Pirimidina/metabolismo , Proteínas Recombinantes
11.
Nat Commun ; 9(1): 2192, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875417

RESUMO

SETBP1 variants occur as somatic mutations in several hematological malignancies such as atypical chronic myeloid leukemia and as de novo germline mutations in the Schinzel-Giedion syndrome. Here we show that SETBP1 binds to gDNA in AT-rich promoter regions, causing activation of gene expression through recruitment of a HCF1/KMT2A/PHF8 epigenetic complex. Deletion of two AT-hooks abrogates the binding of SETBP1 to gDNA and impairs target gene upregulation. Genes controlled by SETBP1 such as MECOM are significantly upregulated in leukemias containing SETBP1 mutations. Gene ontology analysis of deregulated SETBP1 target genes indicates that they are also key controllers of visceral organ development and brain morphogenesis. In line with these findings, in utero brain electroporation of mutated SETBP1 causes impairment of mouse neurogenesis with a profound delay in neuronal migration. In summary, this work unveils a SETBP1 function that directly affects gene transcription and clarifies the mechanism operating in myeloid malignancies and in the Schinzel-Giedion syndrome caused by SETBP1 mutations.


Assuntos
Proteínas de Transporte/genética , Epigênese Genética , Perfilação da Expressão Gênica , Mutação , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Anormalidades Múltiplas/genética , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Anormalidades Craniofaciais/genética , Ontologia Genética , Células HEK293 , Deformidades Congênitas da Mão/genética , Humanos , Deficiência Intelectual/genética , Leucemia/genética , Leucemia/patologia , Camundongos , Unhas Malformadas/genética , Neurogênese/genética , Proteínas Nucleares/metabolismo , Ligação Proteica
13.
Front Mol Neurosci ; 10: 266, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878621

RESUMO

CLN1 disease (OMIM #256730) is an early childhood ceroid-lipofuscinosis associated with mutated CLN1, whose product Palmitoyl-Protein Thioesterase 1 (PPT1) is a lysosomal enzyme involved in the removal of palmitate residues from S-acylated proteins. In neurons, PPT1 expression is also linked to synaptic compartments. The aim of this study was to unravel molecular signatures connected to CLN1. We utilized SH-SY5Y neuroblastoma cells overexpressing wild type CLN1 (SH-p.wtCLN1) and five selected CLN1 patients' mutations. The cellular distribution of wtPPT1 was consistent with regular processing of endogenous protein, partially detected inside Lysosomal Associated Membrane Protein 2 (LAMP2) positive vesicles, while the mutants displayed more diffuse cytoplasmic pattern. Transcriptomic profiling revealed 802 differentially expressed genes (DEGs) in SH-p.wtCLN1 (as compared to empty-vector transfected cells), whereas the number of DEGs detected in the two mutants (p.L222P and p.M57Nfs*45) was significantly lower. Bioinformatic scrutiny linked DEGs with neurite formation and neuronal transmission. Specifically, neuritogenesis and proliferation of neuronal processes were predicted to be hampered in the wtCLN1 overexpressing cell line, and these findings were corroborated by morphological investigations. Palmitoylation survey identified 113 palmitoylated protein-encoding genes in SH-p.wtCLN1, including 25 ones simultaneously assigned to axonal growth and synaptic compartments. A remarkable decrease in the expression of palmitoylated proteins, functionally related to axonal elongation (GAP43, CRMP1 and NEFM) and of the synaptic marker SNAP25, specifically in SH-p.wtCLN1 cells was confirmed by immunoblotting. Subsequent, bioinformatic network survey of DEGs assigned to the synaptic annotations linked 81 DEGs, including 23 ones encoding for palmitoylated proteins. Results obtained in this experimental setting outlined two affected functional modules (connected to the axonal and synaptic compartments), which can be associated with an altered gene dosage of wtCLN1. Moreover, these modules were interrelated with the pathological effects associated with loss of PPT1 function, similarly as observed in the Ppt1 knockout mice and patients with CLN1 disease.

15.
Cell Mol Neurobiol ; 37(4): 665-682, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27422411

RESUMO

Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neuroblastoma/metabolismo , Neurônios/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Proteínas de Membrana/metabolismo , Neuroblastoma/tratamento farmacológico , Neurônios/citologia , Neurônios/efeitos dos fármacos , Tretinoína/farmacologia
16.
Eur J Neurosci ; 43(5): 626-39, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26741810

RESUMO

Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48 h in wild-type mice but significantly less so in PGC-1α transgenic mice. However, at later time points cell degeneration was also evident in the transgenic mouse hippocampus, indicating that PGC-1α overexpression can induce a delay in cell death. Immunoblotting showed that X-linked inhibitor of apoptosis protein (XIAP) was increased in PGC-1α transgenic hippocampus with no significant changes in Bcl-2 or Bcl-X. Collectively, these results show that PGC-1α overexpression contributes to enhanced neuronal viability by stimulating mitochondria number and respiration and increasing levels of OXPHOS proteins and the anti-apoptotic protein XIAP.


Assuntos
Lesões Encefálicas/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Lesões Encefálicas/etiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Morte Celular , Células Cultivadas , Proteínas Inibidoras de Apoptose/genética , Ácido Caínico/toxicidade , Camundongos , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
17.
Data Brief ; 4: 207-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26217791

RESUMO

Mutations in the CLN1 gene that encodes Palmitoyl protein thioesterase 1 (PPT1) or CLN1, cause Infantile NCL (INCL, MIM#256730). PPT1 removes long fatty acid chains such as palmitate from modified cysteine residues of proteins. The data shown here result from isolated protein complexes from PPT1-expressing SH-SY5Y stable cells that were subjected to single step affinity purification coupled to mass spectrometry (AP-MS). Prior to the MS analysis, we utilised a modified filter-aided sample preparation (FASP) protocol. Based on label free quantitative analysis of the data by SAINT, 23 PPT1 interacting partners (IP) were identified. A dense connectivity in PPT1 network was further revealed by functional coupling and extended network analyses, linking it to mitochondrial ATP synthesis coupled protein transport and thioester biosynthetic process. Moreover, the terms: inhibition of organismal death, movement disorders and concentration of lipid were predicted to be altered in the PPT1 network. Data presented here are related to Scifo et al. (J. Proteomics, 123 (2015) 42-53).

18.
J Proteomics ; 123: 42-53, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25865307

RESUMO

Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, characterized by early accumulation of autofluorescent storage material in lysosomes of neurons or other cells. Clinical symptoms of NCL include: progressive loss of vision, mental and motor deterioration, epileptic seizures and premature death. CLN1 disease (MIM#256730) is caused by mutations in the CLN1 gene, which encodes palmitoyl protein thioesterase 1 (PPT1). In this study, we utilised single step affinity purification coupled to mass spectrometry (AP-MS) to unravel the in vivo substrates of human PPT1 in the brain neuronal cells. Protein complexes were isolated from human PPT1 expressing SH-SY5Y stable cells, subjected to filter-aided sample preparation (FASP) and analysed on a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. A total of 23 PPT1 interacting partners (IP) were identified from label free quantitation of the MS data by SAINT platform. Three of the identified PPT1 IP, namely CRMP1, DBH, and MAP1B are predicted to be palmitoylated. Our proteomic analysis confirmed previously suggested roles of PPT1 in axon guidance and lipid metabolism, yet implicates the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway. BIOLOGICAL SIGNIFICANCE: The significance of this work lies in the unravelling of putative in vivo substrates of human CLN1 or PPT1 in brain neuronal cells. Moreover, the PPT1 IP implicate the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Neuroblastoma/metabolismo , Proteômica/métodos , Axônios/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Metabolismo Energético , Glicosilação , Células HEK293 , Humanos , Lisossomos/metabolismo , Espectrometria de Massas , Proteínas de Membrana/genética , Microscopia de Fluorescência , Mitocôndrias/fisiologia , Mutação , Lipofuscinoses Ceroides Neuronais/metabolismo , Neurônios/metabolismo , Fases de Leitura Aberta , Transdução de Sinais , Tioléster Hidrolases
19.
J Nutr Biochem ; 25(11): 1196-1206, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25172634

RESUMO

Human epidemiological evidence and previous studies on mice have shown that Western-style diet (WD) may predispose gut mucosa to colorectal cancer (CRC). The mechanisms that mediate the effects of diet on tumorigenesis are largely unknown. To address putative cancer-predisposing events available for early detection, we quantitatively analyzed the proteome of histologically normal colon of a wild-type (Mlh1(+/+)) and an Mlh1(+/-) mouse after a long-term feeding experiment with WD and AIN-93G control diet. The Mlh1(+/-) mouse carries susceptibility to colon cancer analogous to a human CRC syndrome (Lynch syndrome). Remarkably, WD induced expression changes reflecting metabolic disturbances especially in the cancer-predisposed colon, while similar changes were not significant in the wild-type proteome. Overall, the detected changes constitute a complex interaction network of proteins involved in ATP synthesis coupled proton transport, oxidoreduction coenzyme and nicotinamide nucleotide metabolic processes, important in cell protection against reactive oxygen species toxicity. Of these proteins, selenium binding protein 1 and galectin-4, which directly interact with MutL homolog 1, are underlined in neoplastic processes, suggesting that sensitivity to WD is increased by an Mlh1 mutation. The significance of WD on CRC risk is highlighted by the fact that five out of six mice with neoplasias were fed with WD.


Assuntos
Neoplasias Colorretais/genética , Dieta , Predisposição Genética para Doença , Mucosa Intestinal/patologia , Proteoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Western Blotting , Neoplasias Colorretais/metabolismo , Ácidos Graxos/metabolismo , Glucose/administração & dosagem , Camundongos , Proteína 1 Homóloga a MutL , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Aumento de Peso
20.
J Proteome Res ; 12(5): 2101-15, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23464991

RESUMO

Neuronal ceroid lipofuscinoses (NCL) are the most common inherited progressive encephalopathies of childhood. One of the most prevalent forms of NCL, Juvenile neuronal ceroid lipofuscinosis (JNCL) or CLN3 disease (OMIM: 204200), is caused by mutations in the CLN3 gene on chromosome 16p12.1. Despite progress in the NCL field, the primary function of ceroid-lipofuscinosis neuronal protein 3 (CLN3) remains elusive. In this study, we aimed to clarify the role of human CLN3 in the brain by identifying CLN3-associated proteins using a Tandem Affinity Purification coupled to Mass Spectrometry (TAP-MS) strategy combined with Significance Analysis of Interactome (SAINT). Human SH-SY5Y-NTAP-CLN3 stable cells were used to isolate native protein complexes for subsequent TAP-MS. Bioinformatic analyses of isolated complexes yielded 58 CLN3 interacting partners (IP) including 42 novel CLN3 IP, as well as 16 CLN3 high confidence interacting partners (HCIP) previously identified in another high-throughput study by Behrends et al., 2010. Moreover, 31 IP of ceroid-lipofuscinosis neuronal protein 5 (CLN5) were identified (18 of which were in common with the CLN3 bait). Our findings support previously suggested involvement of CLN3 in transmembrane transport, lipid homeostasis and neuronal excitability, as well as link it to G-protein signaling and protein folding/sorting in the ER.


Assuntos
Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Mapas de Interação de Proteínas , Proteoma/metabolismo , Linhagem Celular Tumoral , Cromatografia de Afinidade , Células HEK293 , Humanos , Imunoprecipitação , Anotação de Sequência Molecular , Neuroblastoma , Lipofuscinoses Ceroides Neuronais/metabolismo , Mapeamento de Interação de Proteínas/métodos , Transporte Proteico , Proteoma/isolamento & purificação , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA