Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 11(8): e12234, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35923105

RESUMO

Breast cancer cells release a large quantity of biocargo-bearing extracellular vesicles (EVs), which mediate intercellular communication within the tumour microenvironment and promote metastasis. To identify EV-bound proteins related to metastasis, we used mass spectrometry to profile EVs from highly and poorly metastatic breast cancer lines of human and mouse origins. Comparative mass spectrometry indicated that integrins, including αv and ß1 subunits, are preferentially enriched in EVs of highly metastatic origin over those of poorly metastatic origin. These results are consistent with our histopathological findings, which show that integrin αv is associated with disease progression in breast cancer patients. Integrin αv colocalizes with the multivesicular-body marker CD63 at a higher frequency in the tumour and is enriched in circulating EVs of breast cancer patients at late stages when compared with circulating EVs from early-stage patients. With a magnetic bead-based flow cytometry assay, we confirmed that integrins αv and ß1 are enriched in the CD63+ subsets of EVs from both human and mouse highly metastatic cells. By analysing the level of integrin αv on circulating EVs, this assay could predict the metastatic potential of a xenografted mouse model. To explore the export mechanism of integrins into EVs, we performed immunoprecipitation mass spectrometry and identified members of the galectin family as potential shuttlers of integrin αvß1 into EVs. In particular, knockdown of galectin-3, but not galectin-1, causes a reduction in the levels of cell surface integrins ß1 and αv, and decreases the colocalization of these integrins with CD63. Importantly, knockdown of galectin-3 leads to a decrease of integrin αvß1 export into the EVs concomitant with a decrease in the metastatic potential of breast cancer cells. Moreover, inhibition of the integrin αvß1 complex leads to a reduction in the binding of EVs to fibronectin, suggesting that integrin αvß1 is important for EV retention in the extracellular matrix. EVs retained in the extracellular matrix are taken up by fibroblasts, which differentiate into cancer associated fibroblasts. In summary, our data indicate an important link between EV-bound integrin αvß1 with breast cancer metastasis and provide additional insights into the export of integrin αvß1 into EVs in the context of metastasis.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Animais , Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Galectina 3 , Humanos , Integrina alfaV , Melanoma , Camundongos , Receptores de Vitronectina/metabolismo , Neoplasias Cutâneas , Microambiente Tumoral , Melanoma Maligno Cutâneo
2.
J Biol Chem ; 295(4): 1143-1152, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31882542

RESUMO

Platinum-based therapeutics are used to manage many forms of cancer, but frequently result in peripheral neuropathy. Currently, the only option available to attenuate chemotherapy-induced neuropathy is to limit or discontinue this treatment. Sphingosine 1-phosphate (S1P) is a lipid-based signaling molecule involved in neuroinflammatory processes by interacting with its five cognate receptors: S1P1-5 In this study, using a combination of drug pharmacodynamic analysis in human study participants, disease modeling in rodents, and cell-based assays, we examined whether S1P signaling may represent a potential target in the treatment of chemotherapy-induced neuropathy. To this end, we first investigated the effects of platinum-based drugs on plasma S1P levels in human cancer patients. Our analysis revealed that oxaliplatin treatment specifically increases one S1P species, d16:1 S1P, in these patients. Although d16:1 S1P is an S1P2 agonist, it has lower potency than the most abundant S1P species (d18:1 S1P). Therefore, as d16:1 S1P concentration increases, it is likely to disproportionately activate proinflammatory S1P1 signaling, shifting the balance away from S1P2 We further show that a selective S1P2 agonist, CYM-5478, reduces allodynia in a rat model of cisplatin-induced neuropathy and attenuates the associated inflammatory processes in the dorsal root ganglia, likely by activating stress-response proteins, including ATF3 and HO-1. Cumulatively, the findings of our study suggest that the development of a specific S1P2 agonist may represent a promising therapeutic approach for the management of chemotherapy-induced neuropathy.


Assuntos
Antineoplásicos/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Antineoplásicos/química , Axônios/patologia , Biomarcadores/metabolismo , Cisplatino/efeitos adversos , Feminino , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Bainha de Mielina/patologia , Neuroglia/patologia , Células PC12 , Doenças do Sistema Nervoso Periférico/patologia , Platina/efeitos adversos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/metabolismo
3.
FASEB J ; 33(6): 7180-7191, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30844311

RESUMO

Epithelial-mesenchymal transition (EMT) is a critical process implicated in the initial stage of cancer metastasis, which is the major cause of tumor recurrence and mortality. Although key transcription factors that regulate EMT, such as snail family transcriptional repressor 2 (SNAI2), are well characterized, the upstream signaling pathways controlling these transcriptional mediators are largely unknown, which limits therapeutic strategies. Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator, generated by sphingosine kinases (SPHK1 and SPHK2), that mainly exerts its effects by binding to the following 5 GPCRs: S1P1 to S1P5. S1P signaling has been reported to regulate different aspects of cancer progression including cell proliferation, apoptosis, and migration; nevertheless, its role in cancer metastasis, specifically via EMT, is not established. Here we show that SPHK1 expression correlates significantly with EMT score in breast cancer cell lines, and with SNAI2 in patient-derived breast tumors. Cell-based assays demonstrate that S1P can rapidly up-regulate the expression of SNAI2 in breast cancer cells via the activation of cognate receptors S1P2 and S1P3. Knockdown studies suggest that S1P2 and S1P3 mediate this effect by activating myocardin-related transcription factor A (MRTF-A) and yes-associated protein (YAP), respectively. Michigan Cancer Foundation 7 cells stably overexpressing S1P2 or S1P3 exhibit a more invasive phenotype, when compared to control cells. Taken together, our findings suggest that S1P produced by SPHK1 induces SNAI2 expression via S1P2-YAP and S1P3-MRTF-A pathways, leading to enhanced cell invasion. Cumulatively, this study reveals a novel mechanism by which S1P activates parallel pathways that regulate the expression of SNAI2, a master regulator of EMT, and provides new insights into druggable therapeutic targets that may limit cancer metastasis. Wang, W., Hind, T., Lam, B. W. S., Herr, D. R. Sphingosine 1-phosphate signaling induces SNAI2 expression to promote cell invasion in breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/fisiologia , Lisofosfolipídeos/fisiologia , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Fatores de Transcrição da Família Snail/biossíntese , Esfingosina/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lisofosfolipídeos/farmacologia , Células MCF-7 , Invasividade Neoplásica/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Interferência de RNA , Estabilidade de RNA , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/fisiologia , Esfingosina/farmacologia , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato/fisiologia , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA