Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 346: 123648, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408504

RESUMO

Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 µmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.


Assuntos
Compostos de Amônio , Chlorella vulgaris , Microalgas , Águas Residuárias , Esgotos , Fotoperíodo , Nitrogênio , Hidrogênio , Biomassa
2.
Environ Sci Pollut Res Int ; 30(42): 96272-96289, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37566326

RESUMO

Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 µA cm-2, and power density (Pmax) of 35.6 µW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.


Assuntos
Eletricidade , Resíduos Industriais , Óleo de Palmeira/análise , Resíduos Industriais/análise , Malásia , Análise da Demanda Biológica de Oxigênio , Óleos de Plantas/química , Eliminação de Resíduos Líquidos
3.
Chemosphere ; 309(Pt 1): 136626, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181856

RESUMO

Endocrine disrupting compounds (EDCs) are extensively found in the environment and severely impacting human health. In addressing this issue, the beta-cyclodextrin crosslinked citric acid (BCD-CA) had been previously employed in membrane-protected micro-solid phase extraction for sequestering EDCs from water medium; and the findings revealed that BCD-CA possessed a selectivity property. On that account, the potential of BCD-CA towards competitive adsorption of selected EDCs was investigated in terms of adsorption mechanism and selectivity property. Factors that affected the removal efficiencies such as sample pH, sorbent dosage, contact time and initial concentration were evaluated. The characterization results revealed that the carbon percentage of BCD-CA had increased by 2.04%, while the hydrogen percentage had reduced by 1.83%, signifying the successful crosslinking of BCD-CA. Besides, the amount of active BCD was calculated to be 3.2 × 10-7 mol, while the amount of carboxyl group was 2.48 × 10-5 mol per 4 mg of BCD-CA. Moreover, BCD-CA was stable in an aqueous medium with the zeta potential obtained at -36.5 mV and had a high-water retention capacity (∼150%). The competitive adsorption mechanism by BCD-CA with EDCs followed the pseudo-second-order kinetics and Freundlich isotherm, suggesting that the adsorption process was dominated by chemisorption on the heterogeneous surface of the adsorbent. Thermodynamic results revealed that adsorption of 4-tert-octylphenol had the most negative ΔG value, indicating most favorable to be adsorbed by BCD-CA as opposed to triclosan and bisphenol A, which was coherent with the apparent formation constant results. These unique properties manifested the practicality of BCD-CA as a selective adsorbent to detect and remove EDCs from the water medium.


Assuntos
Disruptores Endócrinos , Triclosan , beta-Ciclodextrinas , Humanos , Polipropilenos , Ácido Cítrico , Extração em Fase Sólida , beta-Ciclodextrinas/química , Água/química , Carbono , Hidrogênio
4.
J Nanosci Nanotechnol ; 19(8): 5271-5278, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913844

RESUMO

Shaped-controlled ZnO architectures including spherical, rod, rice-like and flower-like were fabricated via a reflux method in which the morphology, crystallinity, functional group and optical properties were tailored under different pH values in the precursor solution. The photoactivities of the prepared ZnO were evaluated under UV irradiation and the findings implied that the flower-like ZnO synthesized at pH 12 displayed superior activities on palm oil mil effluent degradation than those of other structures. The photocatalytic enhancement of flower-like ZnO was ascribed to its unique architecture, good crystallinity and superior optical properties. The flower-like ZnO with excellent photocatalytic performance have been confirmed by formation of hydroxyl radicals using a terephthalic acid-photoluminescence test. There was an optimal photocatalyst amount of 1.0 g/L, at which a maximum chemical oxygen demand removal of palm oil mill effluent was achieved under exposure of UV light. The phytotoxicity experiment via mung beans demonstrated a decrease in phytotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA