Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-13, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088368

RESUMO

Lichens produce secondary metabolites that have many pharmaceutical activities such as antimicrobial, antioxidant, antiviral, anticancer, antigenotoxic, anti-inflammatory, analgesic and antipyretic activities. However, there is limited research on their efflux pump inhibitory activities. Twelve phytochemicals were isolated from Usnea aciculifera, and their activity of AcrAB-TolC efflux pump inhibition was evaluated. Four potential compounds, which are diffractaic acid (2), 8' -O- methylstictic acid (5), 3-hydroxy-4-(methoxycarbonyl)-2,5-dimethylphenyl 2,4-dimethoxy-3,6-dimethylbenzoate (8) and 3-hydroxy-4-(methoxycarbonyl)-2,5-dimethylphenyl 2-hydroxy-4-methoxy-3,6-dimethylbenzoate (9), were found by virtual screening using pharmacophore and 2D-QSAR model. Compound 8 exhibited AcrB inhibition activity in vitro with an accumulation H33342 percentage compared with untreated control of 202% at a concentration of 50 µM and increased the antibacterial activity of levofloxacin by four-fold at a concentration of 200 µM. By molecular docking and molecular dynamics (MD) simulation, the binding affinity of depside and depsidone derivatives to AcrB was also clarified. Despite the poor docking score to the AcrB binding site, compound 8 was the most stable among the four complexes at 20 ns of MD simulation. The analysis of long MD at 100 ns indicated that compound 8 interacts strongly with the residues in the distal pocket, creating a stable complex with ΔGbind of -31.51 kcal.mol-1. According to the ADMETlab 2.0 web server's predictions of pharmacokinetics and toxicities, compound 8 has the potential for drug development.Communicated by Ramaswamy H. Sarma.

2.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37786705

RESUMO

Mesenchymal plasticity has been extensively described in advanced and metastatic epithelial cancers; however, its functional role in malignant progression, metastatic dissemination and therapy response is controversial. More importantly, the role of epithelial mesenchymal transition (EMT) and cell plasticity in tumor heterogeneity, clonal selection and clonal evolution is poorly understood. Functionally, our work clarifies the contribution of EMT to malignant progression and metastasis in pancreatic cancer. We leveraged ad hoc somatic mosaic genome engineering, lineage tracing and ablation technologies and dynamic genetic reporters to trace and ablate tumor-specific lineages along the phenotypic spectrum of epithelial to mesenchymal plasticity. The experimental evidences clarify the essential contribution of mesenchymal lineages to pancreatic cancer evolution and metastatic dissemination. Spatial genomic analysis combined with single cell transcriptomic and epigenomic profiling of epithelial and mesenchymal lineages reveals that EMT promotes with the emergence of chromosomal instability (CIN). Specifically tumor lineages with mesenchymal features display highly conserved patterns of genomic evolution including complex structural genomic rearrangements and chromotriptic events. Genetic ablation of mesenchymal lineages robustly abolished these mutational processes and evolutionary patterns, as confirmed by cross species analysis of pancreatic and other human epithelial cancers. Mechanistically, we discovered that malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, which in turn results in delayed mitosis and catastrophic cell division. Therefore, EMT favors the emergence of high-fitness tumor cells, strongly supporting the concept of a cell-state, lineage-restricted patterns of evolution, where cancer cell sub-clonal speciation is propagated to progenies only through restricted functional compartments. Restraining those evolutionary routes through genetic ablation of clones capable of mesenchymal plasticity and extinction of the derived lineages completely abrogates the malignant potential of one of the most aggressive form of human cancer.

3.
Clin Cancer Res ; 29(19): 4002-4015, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37527013

RESUMO

PURPOSE: Immune checkpoint blockade (ICB) demonstrates durable clinical benefits in a minority of patients with renal cell carcinoma (RCC). We aimed to identify the molecular features that determine the response and develop approaches to enhance it. EXPERIMENTAL DESIGN: We investigated the effects of SET domain-containing protein 2 (SETD2) loss on the DNA damage response pathway, the cytosolic DNA-sensing pathway, the tumor immune microenvironment, and the response to ataxia telangiectasia and rad3-related (ATR) and checkpoint inhibition in RCC. RESULTS: ATR inhibition activated the cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3)-dependent cytosolic DNA-sensing pathway, resulting in the concurrent expression of inflammatory cytokines and immune checkpoints. Among the common RCC genotypes, SETD2 loss is associated with preferential ATR activation and sensitizes cells to ATR inhibition. SETD2 knockdown promoted the cytosolic DNA-sensing pathway in response to ATR inhibition. Treatment with the ATR inhibitor VE822 concurrently upregulated immune cell infiltration and immune checkpoint expression in Setd2 knockdown Renca tumors, providing a rationale for ATR inhibition plus ICB combination therapy. Setd2-deficient Renca tumors demonstrated greater vulnerability to ICB monotherapy or combination therapy with VE822 than Setd2-proficient tumors. Moreover, SETD2 mutations were associated with a higher response rate and prolonged overall survival in patients with ICB-treated RCC but not in patients with non-ICB-treated RCC. CONCLUSIONS: SETD2 loss and ATR inhibition synergize to promote cGAS signaling and enhance immune cell infiltration, providing a mechanistic rationale for the combination of ATR and checkpoint inhibition in patients with RCC with SETD2 mutations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Dano ao DNA , Linhagem Celular Tumoral , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Imunoterapia , DNA , Proteínas Mutadas de Ataxia Telangiectasia , Microambiente Tumoral/genética
4.
Nat Cancer ; 4(7): 984-1000, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365326

RESUMO

Molecular routes to metastatic dissemination are critical determinants of aggressive cancers. Through in vivo CRISPR-Cas9 genome editing, we generated somatic mosaic genetically engineered models that faithfully recapitulate metastatic renal tumors. Disruption of 9p21 locus is an evolutionary driver to systemic disease through the rapid acquisition of complex karyotypes in cancer cells. Cross-species analysis revealed that recurrent patterns of copy number variations, including 21q loss and dysregulation of the interferon pathway, are major drivers of metastatic potential. In vitro and in vivo genomic engineering, leveraging loss-of-function studies, along with a model of partial trisomy of chromosome 21q, demonstrated a dosage-dependent effect of the interferon receptor genes cluster as an adaptive mechanism to deleterious chromosomal instability in metastatic progression. This work provides critical knowledge on drivers of renal cell carcinoma progression and defines the primary role of interferon signaling in constraining the propagation of aneuploid clones in cancer evolution.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Variações do Número de Cópias de DNA/genética , Instabilidade Cromossômica/genética , Aneuploidia , Neoplasias Renais/genética
5.
Clin Transl Med ; 13(5): e1267, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37226898

RESUMO

BACKGROUND: Renal medullary carcinoma (RMC) is a highly aggressive cancer in need of new therapeutic strategies. The neddylation pathway can protect cells from DNA damage induced by the platinum-based chemotherapy used in RMC. We investigated if neddylation inhibition with pevonedistat will synergistically enhance antitumour effects of platinum-based chemotherapy in RMC. METHODS: We evaluated the IC50 concentrations of the neddylation-activating enzyme inhibitor pevonedistat in vitro in RMC cell lines. Bliss synergy scores were calculated using growth inhibition assays following treatment with varying concentrations of pevonedistat and carboplatin. Protein expression was assessed by western blot and immunofluorescence assays. The efficacy of pevonedistat alone or in combination with platinum-based chemotherapy was evaluated in vivo in platinum-naïve and platinum-experienced patient-derived xenograft (PDX) models of RMC. RESULTS: The RMC cell lines demonstrated IC50 concentrations of pevonedistat below the maximum tolerated dose in humans. When combined with carboplatin, pevonedistat demonstrated a significant in vitro synergistic effect. Treatment with carboplatin alone increased nuclear ERCC1 levels used to repair the interstrand crosslinks induced by platinum salts. Conversely, the addition of pevonedistat to carboplatin led to p53 upregulation resulting in FANCD2 suppression and reduced nuclear ERCC1 levels. The addition of pevonedistat to platinum-based chemotherapy significantly inhibited tumour growth in both platinum-naïve and platinum-experienced PDX models of RMC (p < .01). CONCLUSIONS: Our results suggest that pevonedistat synergises with carboplatin to inhibit RMC cell and tumour growth through inhibition of DNA damage repair. These findings support the development of a clinical trial combining pevonedistat with platinum-based chemotherapy for RMC.


Assuntos
Carcinoma Medular , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico
6.
Mem. Inst. Oswaldo Cruz ; 117: e200409, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1375934

RESUMO

The multiplicity of epidemiological scenarios shown by Chagas Disease, derived from multiple transmission routes of the aetiological agent, occurring on multiple geo-ecobiosocial settings determines the complexity of the disease and reveal the difficulties for its control. From the first description of the link between the parasite, the vector and its domestic habitat and the disease that Carlos Chagas made in 1909, the epidemiological scenarios of the American Trypanosomiasis has shown a dynamic increasing complexity. These scenarios changed with time and geography because of new understandings of the disease from multiple studies, because of policies change at the national and international levels and because human movements brought the parasite and vectors to new geographies. Paradigms that seemed solid at a time were broken down, and we learnt about the global dispersion of Trypanosoma cruzi infection, the multiplicity of transmission routes, that the infection can be cured, and that triatomines are not only a health threat in Latin America. We consider the multiple epidemiological scenarios through the different T. cruzi transmission routes, with or without the participation of a Triatominae vector. We then consider the scenario of regions with vectors without the parasite, to finish with the consideration of future prospects.

7.
Sci Transl Med ; 13(617): eabe6201, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34705519

RESUMO

Treatment with immune checkpoint blockade (ICB) has resulted in durable responses for a subset of patients with cancer, with predictive biomarkers for ICB response originally identified largely in the context of hypermutated cancers. Although recent clinical data have demonstrated clinical responses to ICB in certain patients with nonhypermutated cancers, previously established ICB response biomarkers have failed to accurately identify which of these patients may benefit from ICB. Here, we demonstrated that a replication stress response (RSR) defect gene expression signature, but not other proposed biomarkers, is associated with ICB response in 12 independent cohorts of patients with nonhypermutated cancer across seven tumor types, including those of the breast, prostate, kidney, and brain. Induction or suppression of RSR deficiencies was sufficient to modulate response to ICB in preclinical models of breast and renal cancers. Mechanistically, we found that despite robust activation of checkpoint kinase 1 signaling in RSR-deficient cancer cells, aberrant replication origin firing caused exhaustion of replication protein A, resulting in accumulation of immunostimulatory cytosolic DNA. We further found that deficient RSR coincided with increased intratumoral dendritic cells in both mouse cancer models and human tumors. Together, this work demonstrates that the RSR defect gene signature can accurately identify patients who may benefit from ICB across numerous nonhypermutated tumor types, and pharmacological induction of RSR defects may further expand the benefits of ICB to more patients.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Neoplasias/tratamento farmacológico
8.
Andrology ; 9(5): 1603-1616, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960147

RESUMO

BACKGROUND: Cancer treatment of prepubertal patients impacts future fertility due to the abolition of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but no studies have involved cytotoxic treatment before puberty and transplantation after puberty, which would be the most likely clinical scenario. OBJECTIVES: To evaluate donor-derived functional sperm production after SSC transplantation to adult monkeys that had received testicular irradiation during the prepubertal period. MATERIALS AND METHODS: We obtained prepubertal testis tissue by unilaterally castrating six prepubertal monkeys and 2 weeks later irradiated the remaining testes with 6.9 Gy. However, because spermatogenic recovery was observed, we irradiated them again 14 months later with 7 Gy. Three of the monkeys were treated with GnRH-antagonist (GnRH-ant) for 8 weeks. The cryopreserved testis cells from the castrated testes were then allogeneically transplanted into the intact testes of all monkeys. Tissues were harvested 10 months later for analyses. RESULTS: In three of the six monkeys, 61%, 38%, and 11% of the epididymal sperm DNA were of the donor genotype. The ability to recover donor-derived sperm production was not enhanced by the GnRH-ant pretreatment. However, the extent of filling seminiferous tubules during the transplantation procedure was correlated with the eventual production of donor spermatozoa. The donor epididymal spermatozoa from the recipient with 61% donor contribution were capable of fertilizing rhesus eggs and forming embryos. Although the transplantation was done into the rete testis, two GnRH-ant-treated monkeys, which did not produce donor-derived epididymal spermatozoa, displayed irregular tubular cords in the interstitium containing testicular spermatozoa derived from the transplanted donor cells. DISCUSSION AND CONCLUSION: The results further support that sperm production can be restored in non-human primates from tissues cryopreserved prior to prepubertal and post-pubertal gonadotoxic treatment by transplantation of these testicular cells after puberty into seminiferous tubules.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Puberdade/efeitos da radiação , Lesões Experimentais por Radiação/terapia , Espermatogênese/efeitos da radiação , Transplante de Células-Tronco , Animais , Criopreservação , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/administração & dosagem , Macaca mulatta , Masculino , Lesões Experimentais por Radiação/fisiopatologia , Túbulos Seminíferos , Espermatozoides/efeitos da radiação , Testículo/fisiopatologia , Testículo/efeitos da radiação
9.
Nat Commun ; 11(1): 2135, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358509

RESUMO

A non-immunogenic tumor microenvironment (TME) is a significant barrier to immune checkpoint blockade (ICB) response. The impact of Polybromo-1 (PBRM1) on TME and response to ICB in renal cell carcinoma (RCC) remains to be resolved. Here we show that PBRM1/Pbrm1 deficiency reduces the binding of brahma-related gene 1 (BRG1) to the IFNγ receptor 2 (Ifngr2) promoter, decreasing STAT1 phosphorylation and the subsequent expression of IFNγ target genes. An analysis of 3 independent patient cohorts and of murine pre-clinical models reveals that PBRM1 loss is associated with a less immunogenic TME and upregulated angiogenesis. Pbrm1 deficient Renca subcutaneous tumors in mice are more resistance to ICB, and a retrospective analysis of the IMmotion150 RCC study also suggests that PBRM1 mutation reduces benefit from ICB. Our study sheds light on the influence of PBRM1 mutations on IFNγ-STAT1 signaling and TME, and can inform additional preclinical and clinical studies in RCC.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/microbiologia , Fatores de Transcrição/metabolismo , Animais , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/metabolismo , Carcinoma de Células Renais/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Neoplasias Renais/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mutação , Fosforilação , Fator de Transcrição STAT1/metabolismo , Análise Serial de Tecidos , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcriptoma/genética
10.
Andrology ; 8(5): 1428-1441, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32351003

RESUMO

BACKGROUND: In male pre-pubertal cancer patients, radiation and chemotherapy impact future fertility by eradication of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but only a small percentage of spermatozoa produced were of donor origin. Transient hormone suppression with a GnRH antagonist (GnRH-ant) enhanced spermatogenic recovery from transplanted SSCs. OBJECTIVES: To evaluate donor-derived and endogenous spermatogenic recovery after SSC transplantation into irradiated monkeys and to test whether hormone suppression around the time of transplantation facilitates spermatogenic recovery. MATERIALS AND METHODS: Testes of 15 adult rhesus monkeys were irradiated with 7 Gy and 4 months later transplanted, to one of the testes, with cryopreserved testicular cells containing SSCs from unrelated monkeys. Monkeys were either treated with GnRH-ant for 8 weeks before transplantation, GnRH-ant from 4 weeks before to 4 weeks after transplantation, or with no GnRH-ant. Tissues were harvested 10 months after transplantation. RESULTS: Two of the 15 monkeys, a control and a pre-transplantation GnRH-ant-treated, showed substantially higher levels of testicular spermatogenesis and epididymal sperm output in the transplanted side as compared to the untransplanted. Over 84% of epididymal spermatozoa on the transplanted side had the donor genotype and were capable of fertilizing eggs after intracytoplasmic sperm injection forming morulae of the donor paternal origin. Low levels of donor spermatozoa (~1%) were also identified in the epididymis of three additional monkeys. Transplantation also appeared to enhance endogenous spermatogenesis. DISCUSSION AND CONCLUSION: We confirmed that SSC transplantation can be used for restoration of fertility in male cancer survivors exposed to irradiation as a therapeutic agent. The success rate of this procedure, however, is low. The success of filling the tubules with the cell suspension, but not the GnRH-ant treatment, was related to the level of colonization by transplanted cells.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Espermatogênese/fisiologia , Espermatogônias/transplante , Transplante de Células-Tronco/métodos , Testículo/efeitos da radiação , Animais , Macaca mulatta , Masculino , Lesões Experimentais por Radiação
11.
Cancer Cell ; 37(3): 371-386.e12, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32109374

RESUMO

Deficient DNA mismatch repair (dMMR) induces a hypermutator phenotype that can lead to tumorigenesis; however, the functional impact of the high mutation burden resulting from this phenotype remains poorly explored. Here, we demonstrate that dMMR-induced destabilizing mutations lead to proteome instability in dMMR tumors, resulting in an abundance of misfolded protein aggregates. To compensate, dMMR cells utilize a Nedd8-mediated degradation pathway to facilitate clearance of misfolded proteins. Blockade of this Nedd8 clearance pathway with MLN4924 causes accumulation of misfolded protein aggregates, ultimately inducing immunogenic cell death in dMMR cancer cells. To leverage this immunogenic cell death, we combined MLN4924 treatment with PD1 inhibition and found the combination was synergistic, significantly improving efficacy over either treatment alone.


Assuntos
Ciclopentanos/farmacologia , Reparo de Erro de Pareamento de DNA , Neoplasias do Endométrio/tratamento farmacológico , Proteoma/genética , Pirimidinas/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/imunologia , Feminino , Células HCT116 , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Instabilidade de Microssatélites , Mutação , Proteína NEDD8/antagonistas & inibidores , Proteína NEDD8/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Estabilidade Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nat Commun ; 9(1): 5339, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559363

RESUMO

A major challenge in stem cell differentiation is the availability of bioassays to prove cell types generated in vitro are equivalent to cells in vivo. In the mouse, differentiation of primordial germ cell-like cells (PGCLCs) from pluripotent cells was validated by transplantation, leading to the generation of spermatogenesis and to the birth of offspring. Here we report the use of xenotransplantation (monkey to mouse) and homologous transplantation (monkey to monkey) to validate our in vitro protocol for differentiating male rhesus (r) macaque PGCLCs (rPGCLCs) from induced pluripotent stem cells (riPSCs). Specifically, transplantation of aggregates containing rPGCLCs into mouse and nonhuman primate testicles overcomes a major bottleneck in rPGCLC differentiation. These findings suggest that immature rPGCLCs once transplanted into an adult gonadal niche commit to differentiate towards late rPGCs that initiate epigenetic reprogramming but do not complete the conversion into ENO2-positive spermatogonia.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Espermatócitos/citologia , Espermatogênese/fisiologia , Espermatogônias/citologia , Testículo/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Transplante Heterólogo , Transplante Homólogo
13.
Hum Reprod ; 33(12): 2249-2255, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358843

RESUMO

STUDY QUESTION: Can transplanted primate testicular cells form seminiferous tubules de novo, supporting complete spermatogenesis? SUMMARY ANSWER: Cryopreserved testicular cells from a prepubertal monkey can reorganize in an adult monkey recipient testis forming de novo seminiferous tubular cords supporting complete spermatogenesis. WHAT IS KNOWN ALREADY: De novo morphogenesis of testicular tissue using aggregated cells from non-primate species grafted either subcutaneously or in the testis can support spermatogenesis. STUDY DESIGN, SIZE, DURATION: Two postpubertal rhesus monkeys (Macaca mulatta) were given testicular irradiation. One monkey was given GnRH-antagonist treatment from 8 to 16 weeks after irradiation, while the other received sham injections. At 16 weeks, cryopreserved testicular cells from two different prepubertal monkeys [43 × 106 viable (Trypan-blue excluding) cells in 260 µl, and 80 × 106 viable cells in 400 µl] were transplanted via ultrasound-guided injections to one of the rete testis in each recipient, and immune suppression was given. The contralateral testis was sham transplanted. Testes were analyzed 9 months after transplantation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Spermatogenic recovery was assessed by testicular volume, weight, histology and immunofluorescence. Microsatellite genotyping of regions of testicular sections obtained by LCM determined whether the cells were derived from the host or transplanted cells. MAIN RESULTS AND THE ROLE OF CHANCE: Transplanted testis of the GnRH-antagonist-treated recipient, but not the sham-treated recipient, contained numerous irregularly shaped seminiferous tubular cords, 89% of which had differentiating germ cells, including sperm in a few of them. The percentages of donor genotype in different regions of this testis were as follows: normal tubule, 0%; inflammatory, 0%; abnormal tubule region, 67%; whole interior of abnormal tubules, >99%; adluminal region of the abnormal tubules, 92%. Thus, these abnormal tubules, including the enclosed germ cells, were derived de novo from the donor testicular cells. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: The de novo tubules were observed in only one out of the two monkeys transplanted with prepubertal donor testicular cells. WIDER IMPLICATIONS OF THE FINDINGS: These findings may represent a promising strategy for restoration of fertility in male childhood cancer survivors. The approach could be particularly useful in those exposed to therapeutic agents that are detrimental to the normal development of the tubule somatic cells affecting the ability of the endogenous tubules to support spermatogenesis, even from transplanted spermatogonial stem cells. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by research grants P01 HD075795 from Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD/NIH) to K.E.O and Cancer Center Support Grant P30 CA016672 from NCI/NIH to The University of Texas MD Anderson Cancer Center. The authors declare that they have no competing interests.


Assuntos
Túbulos Seminíferos/fisiologia , Espermatogênese/fisiologia , Testículo/citologia , Testículo/transplante , Animais , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/farmacologia , Macaca mulatta , Masculino
14.
Mem. Inst. Oswaldo Cruz ; 110(3): 319-323, 05/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-745982

RESUMO

The migration of invasive vector species has contributed to the worldwide extension of infectious diseases such as dengue (Aedes aegypti) and chikungunya (Aedes albopictus). It is probably a similar behaviour for certain vectors of Chagas disease which allowed it to become a continental burden in Latin America. One of them, Triatoma rubrofasciata has also been spreading throughout the tropical and subtropical world. Here, the recent and massive peridomestic presence of T. rubrofasciata in Vietnam cities is reported, and tentatively explained, highlighting the need for improved entomological surveillance.


Assuntos
Animais , Insetos Vetores/classificação , Triatoma/classificação , Espécies Introduzidas , Vietnã
15.
Chem Pharm Bull (Tokyo) ; 60(9): 1125-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22976320

RESUMO

Two new lignans, pseuderesinol (1), pseuderanoside (2) and a new triterpene, pseuderanic acid (3) were isolated from the dried root of Pseuderanthemum carruthersii (SEEM.) GUILL. var. atropurpureum (BULL.) FOSB. (Acanthaceae), together with ten known compounds, including five lignans, (+)-eudesmin (4), (+)-magnolin (5), (+)-syringaresinol (6), (+)-episyringaresinol (7), (+)-1-hydroxysyringaresinol (8) and five triterpenes, squalene (9), oleanolic acid (10), lupeol (11), betulin (12), betulinic acid (13). Their chemical structures were elucidated by 1D- and 2D-NMR, computational quantum chemistry, as well as high resolution-electrospray ionization (HR-ESI)-MS spectroscopic analysis. The acetylcholinesterase inhibition and cytotoxic activities against HeLa and MCF-7 cancer cell lines were evaluated on some purified compounds at the concentration of 100 µg/mL. Pseuderesinol (1) and magnolin (5) exhibited moderate cytotoxic activities against the MCF-7 cancer cell line.


Assuntos
Acanthaceae/química , Antineoplásicos Fitogênicos/farmacologia , Lignanas/farmacologia , Raízes de Plantas/química , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lignanas/química , Lignanas/isolamento & purificação , Neoplasias/tratamento farmacológico , Triterpenos/química , Triterpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA