Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38727297

RESUMO

Spinal fusion, a common surgery performed for degenerative lumbar conditions, often uses recombinant human bone morphogenetic protein 2 (rhBMP-2) that is associated with adverse effects. Mesenchymal stromal/stem cells (MSCs) and their extracellular vesicles (EVs), particularly exosomes, have demonstrated efficacy in bone and cartilage repair. However, the efficacy of MSC exosomes in spinal fusion remains to be ascertained. This study investigates the fusion efficacy of MSC exosomes delivered via an absorbable collagen sponge packed in a poly Ɛ-caprolactone tricalcium phosphate (PCL-TCP) scaffold in a rat posterolateral spinal fusion model. Herein, it is shown that a single implantation of exosome-supplemented collagen sponge packed in PCL-TCP scaffold enhanced spinal fusion and improved mechanical stability by inducing bone formation and bridging between the transverse processes, as evidenced by significant improvements in fusion score and rate, bone structural parameters, histology, stiffness, and range of motion. This study demonstrates for the first time that MSC exosomes promote bone formation to enhance spinal fusion and mechanical stability in a rat model, supporting its translational potential for application in spinal fusion.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Fusão Vertebral , Animais , Exossomos/metabolismo , Exossomos/transplante , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Fusão Vertebral/métodos , Ratos , Osteogênese/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Masculino , Humanos , Alicerces Teciduais/química , Proteína Morfogenética Óssea 2/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
2.
Tissue Eng Part A ; 25(23-24): 1677-1689, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31337284

RESUMO

Bone morphogenetic protein 2 (BMP-2) is widely used in spinal fusion but it can cause adverse effects such as ectopic bone and adipose tissue in vivo. Neural epidermal growth factor like-like molecule-1 (NELL-1) has been shown to suppress BMP-2-induced adverse effects. However, no optimum carriers that control both NELL-1 and BMP-2 releases to elicit long-term bioactivity have been developed. In this study, we employed polyelectrolyte complex (PEC) as a control release carrier for NELL-1 and BMP-2. An ultra-low dose of BMP-2 synergistically functioned with NELL-1 on bone marrow mesenchymal stem cells osteogenic differentiation with greater mineralization in vitro. The osteoinductive ability of NELL-1 and an ultra-low dose of BMP-2 in PEC was investigated in rat posterolateral spinal fusion. Our results showed increased fusion rate, bone architecture, and improved bone stiffness at 8 weeks after surgery in the combination groups compared with NELL-1 or BMP-2 alone. Moreover, the formation of ectopic bone and adipose tissue was negligible in all the PEC groups. In summary, dual delivery of NELL-1 and an ultra-low dose of BMP-2 in the PEC control release carrier has greater fusion efficiency compared with BMP-2 alone and could potentially be a better alternative to the currently used BMP-2 treatments for spinal fusion. Impact Statement In this study, polyelectrolyte complex was used to absorb neural epidermal growth factor like-like molecule-1 (NELL-1) and bone morphogenetic protein 2 (BMP-2) to achieve controlled dual release. The addition of NELL-1 significantly reduced the effective dose of BMP-2 to 2.5% of its conventional dose in absorbable collagen sponge, to produce solid spinal fusion without significant adverse effects. This study was the first to identify the efficacy of combination NELL-1 and BMP-2 in a control release carrier in spinal fusion, which could be potentially used clinically to increase fusion rate and avoid the adverse effects commonly associated with conventional BMP-2.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Fusão Vertebral , Animais , Fenômenos Biomecânicos , Proteínas de Ligação ao Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Fibrinogênio/metabolismo , Osteogênese/efeitos dos fármacos , Polieletrólitos/química , Ratos Sprague-Dawley , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/fisiologia , Suínos , Alicerces Teciduais/química , Microtomografia por Raio-X
3.
Tissue Eng Part A ; 20(11-12): 1679-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24354664

RESUMO

Efficient and therapeutically safe delivery of recombinant human bone morphogenetic protein 2 (rhBMP-2) continues to be a central issue in bone tissue engineering. Recent evidence indicates that layer-by-layer self-assembly of polyelectrolyte complexes (PECs) can be used to recreate synthetic matrix environments that would act as tuneable reservoirs for delicate biomolecules and cells. Although preliminary in vitro as well as small-animal in vivo studies support this premise, translation into clinically relevant bone defect volumes in larger animal models remains unreported. Here we explored the use of native heparin-based PEC, deposited on a hydrated alginate gel template, to load bioactive rhBMP-2 and to facilitate lumbar interbody spinal fusion in pigs. We observed that triple PEC deposits with the highest protein sequestration efficiency and immobilization capacity promoted higher volume of new bone formation when compared with single PEC with low sequestration efficiency and immobilization capacity. This also resulted in a significantly enhanced biomechanical stability of the fused spinal segment when compared with PEC carriers with relatively low protein sequestration and immobilization capacities (p<0.05). Most importantly, PEC carriers showed a more orderly pattern of new bone deposition and superior containment of bone tissue within implant site when compared to collagen sponge carriers. We conclude that this growth factor sequestration platform is effective in the healing of clinically relevant bone defect volume and could overcome some of the safety concerns and limitations currently associated with rhBMP-2 therapy such as excessive heterotopic ossification.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Eletrólitos/farmacologia , Procedimentos Ortopédicos , Procedimentos de Cirurgia Plástica , Coluna Vertebral/patologia , Coluna Vertebral/cirurgia , Fator de Crescimento Transformador beta/farmacologia , Alginatos/farmacologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Modelos Animais de Doenças , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Humanos , Imageamento Tridimensional , Masculino , Microesferas , Osseointegração/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Coluna Vertebral/diagnóstico por imagem , Sus scrofa , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA