Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Drug Metab Dispos ; 52(8): 836-846, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38772712

RESUMO

This study investigated an association between the cytochrome P450 (CYP) 2C8*3 polymorphism with asthma symptom control in children and changes in lipid metabolism and pro-inflammatory signaling by human bronchial epithelial cells (HBECs) treated with cigarette smoke condensate (CSC). CYP genes are inherently variable in sequence, and while such variations are known to produce clinically relevant effects on drug pharmacokinetics and pharmacodynamics, the effects on endogenous substrate metabolism and associated physiologic processes are less understood. In this study, CYP2C8*3 was associated with improved asthma symptom control among children: Mean asthma control scores were 3.68 (n = 207) for patients with one or more copies of the CYP2C8*3 allele versus 4.42 (n = 965) for CYP2C8*1/*1 (P = 0.0133). In vitro, CYP2C8*3 was associated with an increase in montelukast 36-hydroxylation and a decrease in linoleic acid metabolism despite lower mRNA and protein expression. Additionally, CYP2C8*3 was associated with reduced mRNA expression of interleukin-6 (IL-6) and C-X-C motif chemokine ligand 8 (CXCL-8) by HBECs in response to CSC, which was replicated using the soluble epoxide hydrolase inhibitor, 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid. Interestingly, 9(10)- and 12(13)- dihydroxyoctadecenoic acid, the hydrolyzed metabolites of 9(10)- and 12(13)- epoxyoctadecenoic acid, increased the expression of IL-6 and CXCL-8 mRNA by HBECs. This study reveals previously undocumented effects of the CYP2C8*3 variant on the response of HBECs to exogenous stimuli. SIGNIFICANCE STATEMENT: These findings suggest a role for CYP2C8 in regulating the epoxyoctadecenoic acid:dihydroxyoctadecenoic acid ratio leading to a change in cellular inflammatory responses elicited by environmental stimuli that exacerbate asthma.


Assuntos
Asma , Brônquios , Citocromo P-450 CYP2C8 , Células Epiteliais , Humanos , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C8/metabolismo , Criança , Masculino , Feminino , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Adolescente , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Inflamação/genética , Inflamação/metabolismo , Células Cultivadas , Quinolinas/farmacologia , Polimorfismo de Nucleotídeo Único , Acetatos , Ciclopropanos , Sulfetos
2.
Mol Pharmacol ; 100(3): 295-307, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34290137

RESUMO

Prior studies revealed increased expression of the transient receptor potential vanilloid-3 (TRPV3) ion channel after wood smoke particulate matter (WSPM) treatment of human bronchial epithelial cells (HBECs). TRPV3 attenuated pathologic endoplasmic reticulum stress and cytotoxicity mediated by transient receptor potential ankyrin-1. Here, the basis for how TRPV3 expression is regulated by cell injury and the effects this has on HBEC physiology and WSPM-induced airway remodeling in mice was investigated. TRPV3 mRNA was rapidly increased in HBECs treated with WSPM and after monolayer damage caused by tryptic disruption, scratch wounding, and cell passaging. TRPV3 mRNA abundance varied with time, and stimulated expression occurred independent of new protein synthesis. Overexpression of TRPV3 in HBECs reduced cell migration and wound repair while enhancing cell adhesion. This phenotype correlated with disrupted mRNA expression of ligands of the epidermal growth factor, tumor growth factor-ß, and frizzled receptors. Accordingly, delayed wound repair by TRPV3 overexpressing cells was reversed by growth factor supplementation. In normal HBECs, TRPV3 upregulation was triggered by exogenous growth factor supplementation and was attenuated by inhibitors of growth factor receptor signaling. In mice, subacute oropharyngeal instillation with WSPM also promoted TRPV3 mRNA expression and epithelial remodeling, which was attenuated by TRPV3 antagonist pre- and cotreatment. This latter effect may be the consequence of antagonist-induced TRPV3 expression. These findings provide insights into the roles of TRPV3 in lung epithelial cells under basal and dynamic states, as well as highlight potential roles for TRPV3 ligands in modulating epithelial damage/repair. SIGNIFICANCE STATEMENT: Coordinated epithelial repair is essential for the maintenance of the airways, with deficiencies and exaggerated repair associated with adverse consequences to respiratory health. This study shows that TRPV3, an ion channel, is involved in coordinating repair through integrated repair signaling pathways, wherein TRPV3 expression is upregulated immediately after injury and returns to basal levels as cells complete the repair process. TRPV3 may be a novel target for understanding and/or treating conditions in which airway/lung epithelial repair is not properly orchestrated.


Assuntos
Células Epiteliais/metabolismo , Lesão Pulmonar/metabolismo , Material Particulado/efeitos adversos , Transdução de Sinais , Fumaça/efeitos adversos , Canais de Cátion TRPV/metabolismo , Remodelação das Vias Aéreas/genética , Animais , Brônquios/lesões , Brônquios/metabolismo , Brônquios/patologia , Adesão Celular/genética , Linhagem Celular , Movimento Celular/genética , Células Epiteliais/patologia , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Lesão Pulmonar/etiologia , Masculino , Camundongos Endogâmicos C57BL , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Transcriptoma , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , Madeira , Cicatrização/fisiologia
3.
Biomedicines ; 7(2)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163699

RESUMO

Hemoglobin (Hb) released during red blood cell lysis can initiate TLR4-dependent signaling and trigger NF-κB activation in surrounding cells. Observations of chronic bleeding in various cancers leads us to hypothesize that Hb and Hb degradation products released from lysed RBC near cancer nests might modulate local TLR4-positive cells. We addressed the hypothesis in vitro by measuring Hb- and biliverdin (Bv)-induced NF-κB signaling in an engineered human TLR4 reporter cell model (HEK-BlueTM hTLR4). Therein, TLR4 stimulation was assessed by measuring NF-κB-dependent secreted alkaline phosphatase (SEAP). hTLR4 reporter cells incubated with 8 ηM lipopolysaccharide (LPS) or 20-40 µM fungal mannoprotein (FM) produced significant amounts of SEAP. hTLR4 reporter cells also produced SEAP in response to human, but not porcine or bovine, Hb. HEK-Blue Null2TM reporter cells lacking TLR4 did not respond to LPS, FM, or Hb. Bv was non-stimulatory in reporter cells. When Bv was added to Hb-stimulated reporter cells, SEAP production was reduced by 95%, but when Bv was applied during LPS and FM stimulation, SEAP production was reduced by 33% and 27%, respectively. In conclusion, Hb initiated NF-κB signaling that was dependent upon TLR4 expression and that Bv can act as a TLR4 antagonist. Moreover, this study suggests that hemorrhage and extravascular hemolysis could provide competitive Hb and Bv signaling to nearby cells expressing TLR4, and that this process could modulate NF-κB signaling in TLR4-positive cancer cells and cancer-infiltrating leukocytes.

4.
Nat Methods ; 15(11): 941-946, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297964

RESUMO

CRISPR-Cas9 screening allows genome-wide interrogation of gene function. Currently, to achieve the high and uniform Cas9 expression desirable for screening, one needs to engineer stable and clonal Cas9-expressing cells-an approach that is not applicable in human primary cells. Guide Swap permits genome-scale pooled CRISPR-Cas9 screening in human primary cells by exploiting the unexpected finding that editing by lentivirally delivered, targeted guide RNAs (gRNAs) occurs efficiently when Cas9 is introduced in complex with nontargeting gRNA. We validated Guide Swap in depletion and enrichment screens in CD4+ T cells. Next, we implemented Guide Swap in a model of ex vivo hematopoiesis, and identified known and previously unknown regulators of CD34+ hematopoietic stem and progenitor cell (HSPC) expansion. We anticipate that this platform will be broadly applicable to other challenging cell types, and thus will enable discovery in previously inaccessible but biologically relevant human primary cell systems.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Genoma Humano , Células-Tronco Hematopoéticas/metabolismo , RNA Guia de Cinetoplastídeos/genética , Linfócitos T CD8-Positivos/citologia , Células Cultivadas , Células HEK293 , Células-Tronco Hematopoéticas/citologia , Humanos
5.
Nat Commun ; 9(1): 1531, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670077

RESUMO

The balance between stem cell quiescence and proliferation in skeletal muscle is tightly controlled, but perturbed in a variety of disease states. Despite progress in identifying activators of stem cell proliferation, the niche factor(s) responsible for quiescence induction remain unclear. Here we report an in vivo imaging-based screen which identifies Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, as a potent inducer of muscle stem cell (MuSC, satellite cell) quiescence. OSM is produced by muscle fibers, induces reversible MuSC cell cycle exit, and maintains stem cell regenerative capacity as judged by serial transplantation. Conditional OSM receptor deletion in satellite cells leads to stem cell depletion and impaired regeneration following injury. These results identify Oncostatin M as a secreted niche factor responsible for quiescence induction, and for the first time establish a direct connection between induction of quiescence, stemness, and transplantation potential in solid organ stem cells.


Assuntos
Músculo Esquelético/metabolismo , Oncostatina M/fisiologia , Células-Tronco/citologia , Alelos , Animais , Ciclo Celular , Diferenciação Celular , Divisão Celular , Linhagem Celular , Proliferação de Células , Feminino , Humanos , Interleucina-6/metabolismo , Luminescência , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais
6.
Oncotarget ; 8(59): 99913-99930, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29245949

RESUMO

Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo, murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.

7.
PLoS One ; 12(12): e0189939, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29281684

RESUMO

The ability of soluble C. albicans 20A (serotype A) mannoprotein (CMP) to serve as a ligand for toll-like receptor 4 (TLR4) and its co-receptors was examined using commercially available and stably-transfected HEK293 cells that express human TLR4, MD2 and CD14, but not MR. These TLR4 reporter cells also express an NF-κB-dependent, secreted embryonic alkaline phosphatase (SEAP) reporter gene. TLR4-reporter cells exhibited a dose-dependent SEAP response to both LPS and CMP, wherein peak activation was achieved after stimulation with 40-50 µg/mL of CMP. Incubation on polymyxin B resin had no effect on CMP's ligand activity, but neutralized LPS-spiked controls. HEK293 Null cells lacking TLR4 and possessing the same SEAP reporter failed to respond to LPS or CMP, but produced SEAP when activated with TNFα. Reporter cell NF-κB responses were accompanied by transcription of IL-8, TNFα, and COX-2 genes. Celecoxib inhibited LPS-, CMP-, and TNFα-dependent NF-κB responses; whereas, indomethacin had limited effect on LPS and CMP responses. SEAP production in response to C. albicans A9 mnn4Δ mutant CMP, lacking phosphomannosylations on N-linked glycans, was significantly greater (p ≤ 0.005) than SEAP responses to CMP derived from parental A9 (both serotype B). These data confirm that engineered human cells expressing TLR4, MD2 and CD14 can respond to CMP with NF-κB activation and the response can be influenced by variations in CMP-mannosylation. Future characterizations of CMPs from other sources and their application in this model may provide further insight into variations observed with TLR4 dependent innate immune responses targeting different C. albicans strains.


Assuntos
Candida albicans/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/metabolismo , Glicoproteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Ciclo-Oxigenase 2/genética , Glicosilação , Células HEK293 , Humanos , Interleucina-8/genética , Lipopolissacarídeos/farmacologia , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética
8.
Clin Breast Cancer ; 17(7): 503-509, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28579139

RESUMO

BACKGROUND: The aims of this study were to assess the safety and tolerability of nanoparticle albumin bound paclitaxel (nab-paclitaxel), doxorubicin, and cyclophosphamide as combination therapy for breast cancer patients in the neoadjuvant setting and to assess the overall clinical response and pathologic complete response (pCR). PATIENTS AND METHODS: Twenty-six women with newly diagnosed stage II to III histologically or cytologically proven adenocarcinoma of the breast with negative HER2 status were enrolled. Patients were treated with nab-paclitaxel 100 mg/m2, doxorubicin 50 mg/m2, and cyclophosphamide 500 mg/m2 on day 1 and nab-paclitaxel 100 mg/m2 on day 8 in a 21-day cycle for 6 cycles total. RESULTS: Most adverse events attributed to treatment were decreased white blood cell count, neutropenia, anemia, thrombocytopenia, and lymphopenia with a median duration of 8 days. Fifteen of 23 (65.2%; 95% confidence interval [CI], 45.7%-84.6%) had a complete clinical response and 8 of 23 (34.7%; 95% CI, 15.2%-54.1%) had a partial clinical response for an overall clinical response rate of 100%. Thirteen of 23 patients (56.5%; 95% CI, 36.2%-76.7%) had a pCR. All 10 triple-negative breast cancer (TNBC) patients (100%) achieved a pCR. CONCLUSION: The regimen of nab-paclitaxel, doxorubicin, and cyclophosphamide chemotherapy was well tolerated and resulted in high clinical as well as pathologic responses, particularly in TNBC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Terapia Neoadjuvante , Adulto , Idoso , Albuminas/administração & dosagem , Neoplasias da Mama/patologia , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Paclitaxel/administração & dosagem , Prognóstico
9.
Artigo em Inglês | MEDLINE | ID: mdl-32913974

RESUMO

PURPOSE: The anticancer activity of valproic acid (VPA) is attributed to the inhibition of histone deacetylase. We previously published the genomically derived sensitivity signature for VPA (GDSS-VPA), a gene expression biomarker that predicts breast cancer sensitivity to VPA in vitro and in vivo. We conducted a window-of-opportunity study that examined the tolerability of VPA and the ability of the GDSS-VPA to predict biologic changes in breast tumors after treatment with VPA. PATIENTS AND METHODS: Eligible women had untreated breast cancer with breast tumors larger than 1.5 cm. After a biopsy, women were given VPA for 7 to 12 days, increasing from 30 mg/kg/d orally divided into two doses per day to a maximum of 50 mg/kg/d. After VPA treatment, serum VPA level was measured and then breast surgery or biopsy was performed. Tumor proliferation was assessed by using Ki-67 immunohistochemistry. Histone acetylation of peripheral blood mononuclear cells was assessed by Western blot. Dynamic contrast-enhanced magnetic resonance imaging scans were performed before and after VPA treatment. RESULTS: Thirty women were evaluable. The median age was 54 years (range, 31-73 years). Fifty-two percent of women tolerated VPA at 50 mg/kg/d, but 10% missed more than two doses as a result of adverse events. Grade 3 adverse events included vomiting and diarrhea (one patient) and fatigue (one patient). The end serum VPA level correlated with a change in histone acetylation of peripheral blood mononuclear cells (ρ = 0.451; P = .024). Fifty percent of women (three of six) with triple-negative breast cancer had a Ki-67 reduction of at least 10% compared with 17% of other women. Women whose tumors had higher GDSS-VPA were more likely to have a Ki-67 decrease of at least 10% (area under the curve, 0.66). CONCLUSION: VPA was well tolerated and there was a significant correlation between serum VPA levels and histone acetylation. VPA treatment caused a decrease in proliferation of breast tumors. The genomic biomarker correlated with decreased proliferation. Inhibition of histone deacetylase is a valid strategy for drug development in triple-negative breast cancer using gene expression biomarkers.

10.
Nature ; 506(7486): 52-7, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476824

RESUMO

Recent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T-cell function in immunosuppressive tumours are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumour microenvironment. We devised an in vivo pooled short hairpin RNA (shRNA) screen in which shRNAs targeting negative regulators became highly enriched in murine tumours by releasing a block on T-cell proliferation upon tumour antigen recognition. Such shRNAs were identified by deep sequencing of the shRNA cassette from T cells infiltrating tumour or control tissues. One of the target genes was Ppp2r2d, a regulatory subunit of the PP2A phosphatase family. In tumours, Ppp2r2d knockdown inhibited T-cell apoptosis and enhanced T-cell proliferation as well as cytokine production. Key regulators of immune function can therefore be discovered in relevant tissue microenvironments.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Proteína Fosfatase 2/metabolismo , Microambiente Tumoral/imunologia , Animais , Antígenos de Neoplasias/imunologia , Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Fosfatase 2/deficiência , Proteína Fosfatase 2/genética , RNA Interferente Pequeno/genética , Reprodutibilidade dos Testes
11.
Clin Cancer Res ; 19(11): 2929-40, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23403635

RESUMO

PURPOSE: Effective therapies for KRAS-mutant colorectal cancer (CRC) are a critical unmet clinical need. Previously, we described genetically engineered mouse models (GEMM) for sporadic Kras-mutant and non-mutant CRC suitable for preclinical evaluation of experimental therapeutics. To accelerate drug discovery and validation, we sought to derive low-passage cell lines from GEMM Kras-mutant and wild-type tumors for in vitro screening and transplantation into the native colonic environment of immunocompetent mice for in vivo validation. EXPERIMENTAL DESIGN: Cell lines were derived from Kras-mutant and non-mutant GEMM tumors under defined media conditions. Growth kinetics, phosphoproteomes, transcriptomes, drug sensitivity, and metabolism were examined. Cell lines were implanted in mice and monitored for in vivo tumor analysis. RESULTS: Kras-mutant cell lines displayed increased proliferation, mitogen-activated protein kinase signaling, and phosphoinositide-3 kinase signaling. Microarray analysis identified significant overlap with human CRC-related gene signatures, including KRAS-mutant and metastatic CRC. Further analyses revealed enrichment for numerous disease-relevant biologic pathways, including glucose metabolism. Functional assessment in vitro and in vivo validated this finding and highlighted the dependence of Kras-mutant CRC on oncogenic signaling and on aerobic glycolysis. CONCLUSIONS: We have successfully characterized a novel GEMM-derived orthotopic transplant model of human KRAS-mutant CRC. This approach combines in vitro screening capability using low-passage cell lines that recapitulate human CRC and potential for rapid in vivo validation using cell line-derived tumors that develop in the colonic microenvironment of immunocompetent animals. Taken together, this platform is a clear advancement in preclinical CRC models for comprehensive drug discovery and validation efforts.


Assuntos
Neoplasias do Colo/genética , Mutação , Proteínas ras/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes APC , Genes p53 , Genótipo , Glucose/metabolismo , Humanos , Ácido Láctico/biossíntese , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
12.
Reprod Toxicol ; 37: 24-30, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23384967

RESUMO

Bisphenol A (BPA) and diethylstilbestrol (DES) are endocrine-disrupting chemicals that interact with the human pregnane X receptor (PXR). CYP3A4 enzyme is essential in the hydroxylation of steroid hormones and is regulated by PXR. In the present study, human and rat hepatoma cell lines were exposed to BPA and DES. Both BPA and DES (10-50µM) caused a significant activation of the CYP3A4 promoter via the PXR in the DPX2 human hepatoma cell line. No activation of rat PXR was seen. BPA and DES treated DPX2 cells demonstrated increased expression of CYP3A4 mRNA, and increased enzyme activity. In summary, BPA, in concentrations relevant to current safety levels of human exposure, activates the human PXR and demonstrates an increase in CYP3A4 mRNA expression and enzyme activity. BPA actions in this model system occur to a greater extent than DES. This study raises concerns regarding our current toxicity testing paradigms and species utilization.


Assuntos
Compostos Benzidrílicos/toxicidade , Citocromo P-450 CYP3A/biossíntese , Sistema Enzimático do Citocromo P-450/biossíntese , Dietilestilbestrol/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Animais , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/genética , Sistema Enzimático do Citocromo P-450/genética , Indução Enzimática , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Receptor de Pregnano X , Ratos , Receptores de Esteroides/metabolismo , Testes de Toxicidade
13.
PLoS One ; 7(10): e47873, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23118901

RESUMO

BACKGROUND: Epidemiological studies suggest that mushroom intake is inversely correlated with gastric, gastrointestinal and breast cancers. We have recently demonstrated anticancer and anti-inflammatory activity of triterpene extract isolated from mushroom Ganoderma lucidum (GLT). The aim of the present study was to evaluate whether GLT prevents colitis-associated carcinogenesis in mice. METHODS/PRINCIPAL FINDINGS: Colon carcinogenesis was induced by the food-borne carcinogen (2-Amino-1-methyl-6-phenylimidazol[4,5-b]pyridine [PhIP]) and inflammation (dextran sodium sulfate [DSS]) in mice. Mice were treated with 0, 100, 300 and 500 mg GLT/kg of body weight 3 times per week for 4 months. Cell proliferation, expression of cyclin D1 and COX-2 and macrophage infiltration was assessed by immunohistochemistry. The effect of GLT on XRE/AhR, PXR and rPXR was evaluated by the reporter gene assays. Expression of metabolizing enzymes CYP1A2, CYP3A1 and CYP3A4 in colon tissue was determined by immunohistochemistry. GLT treatment significantly suppressed focal hyperplasia, aberrant crypt foci (ACF) formation and tumor formation in mice exposed to PhIP/DSS. The anti-proliferative effects of GLT were further confirmed by the decreased staining with Ki-67 in colon tissues. PhIP/DSS-induced colon inflammation was demonstrated by the significant shortening of the large intestine and macrophage infiltrations, whereas GLT treatment prevented the shortening of colon lengths, and reduced infiltration of macrophages in colon tissue. GLT treatment also significantly down-regulated PhIP/DSS-dependent expression of cyclin D1, COX-2, CYP1A2 and CYP3A4 in colon tissue. CONCLUSIONS: Our data suggest that GLT could be considered as an alternative dietary approach for the prevention of colitis-associated cancer.


Assuntos
Neoplasias do Colo , Inflamação , Extratos Vegetais/administração & dosagem , Reishi , Aminopiridinas/toxicidade , Animais , Anti-Inflamatórios/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Colite/complicações , Colite/tratamento farmacológico , Colite/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/dietoterapia , Neoplasias do Colo/metabolismo , Sulfato de Dextrana/toxicidade , Neoplasias Gastrointestinais/complicações , Neoplasias Gastrointestinais/dietoterapia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperplasia/induzido quimicamente , Hiperplasia/dietoterapia , Hiperplasia/metabolismo , Imidazóis/toxicidade , Inflamação/induzido quimicamente , Inflamação/dietoterapia , Macrófagos/efeitos dos fármacos , Camundongos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/dietoterapia , Neoplasias Experimentais/metabolismo , Extratos Vegetais/química , Reishi/química
14.
PLoS One ; 7(7): e42001, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860045

RESUMO

To develop a comprehensive overview of copy number aberrations (CNAs) in stage-II/III colorectal cancer (CRC), we characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS) samples (n = 269) had 66 minimal common CNA regions, with frequent gains on 20 q (72.5%), 7 (41.8%), 8 q (33.1%) and 13 q (51.0%) and losses on 18 (58.6%), 4 q (26%) and 21 q (21.6%). MSS tumors have significantly more CNAs than microsatellite-instable (MSI) tumors: within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p<0.01). Focal aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET, and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A, which also showed high concordance between copy number and expression. Survival analysis associated a specific patient segment featured by chromosome 20 q gains to an improved overall survival, which might be due to higher expression of genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among unlinked loci, including positive correlation between 20 q gain and 8 q gain, and 20 q gain and chromosome 18 loss, consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/III CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.


Assuntos
Neoplasias Colorretais/genética , Dosagem de Genes , Genoma Humano , Oncogenes , Cromossomos Humanos Par 16 , Humanos , Repetições de Microssatélites/genética
15.
Mol Syst Biol ; 8: 594, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22806142

RESUMO

Common inflammatome gene signatures as well as disease-specific signatures were identified by analyzing 12 expression profiling data sets derived from 9 different tissues isolated from 11 rodent inflammatory disease models. The inflammatome signature significantly overlaps with known drug targets and co-expressed gene modules linked to metabolic disorders and cancer. A large proportion of genes in this signature are tightly connected in tissue-specific Bayesian networks (BNs) built from multiple independent mouse and human cohorts. Both the inflammatome signature and the corresponding consensus BNs are highly enriched for immune response-related genes supported as causal for adiposity, adipokine, diabetes, aortic lesion, bone, muscle, and cholesterol traits, suggesting the causal nature of the inflammatome for a variety of diseases. Integration of this inflammatome signature with the BNs uncovered 151 key drivers that appeared to be more biologically important than the non-drivers in terms of their impact on disease phenotypes. The identification of this inflammatome signature, its network architecture, and key drivers not only highlights the shared etiology but also pinpoints potential targets for intervention of various common diseases.


Assuntos
Perfilação da Expressão Gênica , Inflamassomos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Fatores Etários , Análise de Variância , Animais , Teorema de Bayes , Caspases/genética , Caspases/imunologia , Quimiocinas/genética , Quimiocinas/imunologia , Estudos de Coortes , Biologia Computacional/métodos , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes/imunologia , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
16.
BMC Bioinformatics ; 13: 46, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22443377

RESUMO

BACKGROUND: Identification of active causal regulators is a crucial problem in understanding mechanism of diseases or finding drug targets. Methods that infer causal regulators directly from primary data have been proposed and successfully validated in some cases. These methods necessarily require very large sample sizes or a mix of different data types. Recent studies have shown that prior biological knowledge can successfully boost a method's ability to find regulators. RESULTS: We present a simple data-driven method, Correlation Set Analysis (CSA), for comprehensively detecting active regulators in disease populations by integrating co-expression analysis and a specific type of literature-derived causal relationships. Instead of investigating the co-expression level between regulators and their regulatees, we focus on coherence of regulatees of a regulator. Using simulated datasets we show that our method performs very well at recovering even weak regulatory relationships with a low false discovery rate. Using three separate real biological datasets we were able to recover well known and as yet undescribed, active regulators for each disease population. The results are represented as a rank-ordered list of regulators, and reveals both single and higher-order regulatory relationships. CONCLUSIONS: CSA is an intuitive data-driven way of selecting directed perturbation experiments that are relevant to a disease population of interest and represent a starting point for further investigation. Our findings demonstrate that combining co-expression analysis on regulatee sets with a literature-derived network can successfully identify causal regulators and help develop possible hypothesis to explain disease progression.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Simulação por Computador , Feminino , Humanos , Linfoma de Células B/genética , Doenças Metabólicas/genética , Neoplasias Ovarianas/genética , Tamanho da Amostra , Transcrição Gênica
17.
BMC Cancer ; 11: 481, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22070665

RESUMO

BACKGROUND: The prognosis of hepatocellular carcinoma (HCC) varies following surgical resection and the large variation remains largely unexplained. Studies have revealed the ability of clinicopathologic parameters and gene expression to predict HCC prognosis. However, there has been little systematic effort to compare the performance of these two types of predictors or combine them in a comprehensive model. METHODS: Tumor and adjacent non-tumor liver tissues were collected from 272 ethnic Chinese HCC patients who received curative surgery. We combined clinicopathologic parameters and gene expression data (from both tissue types) in predicting HCC prognosis. Cross-validation and independent studies were employed to assess prediction. RESULTS: HCC prognosis was significantly associated with six clinicopathologic parameters, which can partition the patients into good- and poor-prognosis groups. Within each group, gene expression data further divide patients into distinct prognostic subgroups. Our predictive genes significantly overlap with previously published gene sets predictive of prognosis. Moreover, the predictive genes were enriched for genes that underwent normal-to-tumor gene network transformation. Previously documented liver eSNPs underlying the HCC predictive gene signatures were enriched for SNPs that associated with HCC prognosis, providing support that these genes are involved in key processes of tumorigenesis. CONCLUSION: When applied individually, clinicopathologic parameters and gene expression offered similar predictive power for HCC prognosis. In contrast, a combination of the two types of data dramatically improved the power to predict HCC prognosis. Our results also provided a framework for understanding the impact of gene expression on the processes of tumorigenesis and clinical outcome.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirurgia , Transformação Celular Neoplásica/genética , Intervalo Livre de Doença , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico
18.
BMC Syst Biol ; 5: 121, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21806811

RESUMO

BACKGROUND: One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies. RESULTS: We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments. CONCLUSIONS: To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data.


Assuntos
Algoritmos , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA/genética , Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Mutação/genética , Biologia de Sistemas/métodos , Teorema de Bayes , Feminino , Humanos , RNA Interferente Pequeno/genética
19.
PLoS One ; 6(7): e20090, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21750698

RESUMO

BACKGROUND: In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN) and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of tumorigenesis and disease progression remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy number variation and survival using ∼250 AN and TU samples representing, respectively, the pre-cancer state, and the result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and genes differentially correlated between AN and TU. CONCLUSIONS/SIGNIFICANCE: This suggests that the process of tumor evolution involves rate-limiting steps related to the background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be a causal driver of tumor evolution in HCC and perhaps many solid tumor types.


Assuntos
Carcinoma Hepatocelular/genética , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Neoplasias Hepáticas/genética , Fígado/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Cromossomos Humanos Par 1/genética , Feminino , Redes Reguladoras de Genes , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-met/genética , Análise de Regressão
20.
J Neurochem ; 117(1): 82-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21219332

RESUMO

Seizure activity can alter GABA transporter and osmoprotective gene expression, which may be involved in the pathogenesis of epilepsy. However, the response of the betaine/GABA transporter (BGT1) is unknown. The goal of the present study was to compare the expression of BGT1 mRNA to that of other osmoprotective genes and GABA transporters following status epilepticus (SE). The possible contributory role of dehydration and inflammation was also investigated because both have been shown to be involved in the regulation of GABA transporter and/or osmoprotective gene expression. BGT1 mRNA was increased 24 h post-SE, as were osmoprotective genes. BGT1 was decreased 72 h and 4 weeks post-SE, as were the GABA transporter mRNAs. The mRNA values for osmoprotective genes following 24-h water withdrawal were significantly lower than the values obtained 24 h post-SE despite similarities in their plasma osmolality values. BGT1 mRNA was not altered by lipopolysaccharide-induced inflammation while the transcription factor tonicity-responsive enhancer binding protein and the GABA transporters 1 and 3 were. These results suggest that neither plasma osmolality nor inflammation fully account for the changes seen in BGT1 mRNA expression post-SE. However, it is evident that BGT1 mRNA expression is altered by SE and displays a temporal pattern with similarities to both GABA and osmolyte transporters. Further investigation of BGT1 regulation in the brain is warranted.


Assuntos
Betaína/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Desidratação/genética , Regulação da Expressão Gênica , Mediadores da Inflamação/fisiologia , RNA Mensageiro/biossíntese , Estado Epiléptico/metabolismo , Animais , Desidratação/etiologia , Desidratação/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/biossíntese , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estado Epiléptico/complicações , Estado Epiléptico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA