Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Med Chem ; 67(12): 10436-10446, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38783480

RESUMO

Ion mobility mass spectrometry (IM-MS) can be used to analyze native proteins according to their size and shape. By sampling individual molecules, it allows us to study mixtures of conformations, as long as they have different collision cross sections and maintain their native conformation after dehydration and vaporization in the mass spectrometer. Even though conformational heterogeneity of prolyl oligopeptidase has been demonstrated in solution, it is not detectable in IM-MS. Factors that affect the conformation in solution, binding of an active site ligand, the stabilizing Ser554Ala mutation, and acidification do not qualitatively affect the collision-induced unfolding pattern. However, measuring the protection of accessible cysteines upon ligand binding provides a principle for the development of MS-based ligand screening methods.


Assuntos
Prolil Oligopeptidases , Conformação Proteica , Serina Endopeptidases , Prolil Oligopeptidases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Ligantes , Espectrometria de Mobilidade Iônica , Modelos Moleculares , Espectrometria de Massas/métodos , Domínio Catalítico , Humanos
2.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639054

RESUMO

The protease activity in inflammatory bowel disease (IBD) and irritable bowel syndrome has been studied extensively using synthetic fluorogenic substrates targeting specific sets of proteases. We explored activities in colonic tissue from a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model by investigating the cleavage of bioactive peptides. Pure trypsin- and elastase-like proteases on the one hand and colonic tissue from rats with TNBS-induced colitis in the acute or post-inflammatory phase on the other, were incubated with relevant peptides to identify their cleavage pattern by mass spectrometry. An increased cleavage of several peptides was observed in the colon from acute colitis rats. The tethered ligand (TL) sequences of peptides mimicking the N-terminus of protease-activated receptors (PAR) 1 and 4 were significantly unmasked by acute colitis samples and these cleavages were positively correlated with thrombin activity. Increased cleavage of ß-endorphin and disarming of the TL-sequence of the PAR3-based peptide were observed in acute colitis and linked to chymotrypsin-like activity. Increased processing of the enkephalins points to the involvement of proteases with specificities different from trypsin- or chymotrypsin-like enzymes. In conclusion, our results suggest thrombin, chymotrypsin-like proteases and a set of proteases with different specificities as potential therapeutic targets in IBD.


Assuntos
Colite/metabolismo , Peptídeos/metabolismo , Receptores Ativados por Proteinase/metabolismo , Sequência de Aminoácidos , Animais , Biomarcadores , Colite/etiologia , Colite/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Masculino , Peptídeos/química , Proteólise , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Biochem Pharmacol ; 192: 114738, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418354

RESUMO

The renin-angiotensin system, with the octapeptide angiotensin II as key player, is important in the renal, cardiac and vascular physiology. Prolyl carboxypeptidase (PRCP), prolyl endopeptidase (PREP) and angiotensin converting enzyme 2 (ACE2) are reported to be involved in the conversion of angiotensin II to angiotensin (1-7). Previous investigations showed that the processing of angiotensin II is cell- and species-specific and little is known about its conversion in human endothelial cells. Therefore, we aimed to investigate the C-terminal processing of angiotensin II and III in comparison to the processing of des-Arg9-bradykinin in human endothelial cells. To this end, human umbilical vein and aortic endothelial cells (HUVEC and HAoEC) were incubated with the peptides for different time periods. Mass spectrometry analysis was performed on the supernatants to check for cleavage products. Contribution of PRCP, ACE2 and PREP to the peptide cleavage was evaluated by use of the selective inhibitors compound 8o, DX600 and KYP-2047. The use of these selective inhibitors revealed that the C-terminal cleavage of angiotensin II and III was PRCP-dependent in HUVEC and HAoEC. In contrast, the C-terminal cleavage of des-Arg9-bradykinin was PRCP-dependent in HUVEC and PRCP- and ACE2-dependent in HAoEC. With this study, we contribute to a better understanding of the processing of peptides involved in the alternative renin-angiotensin system. We conclude that PRCP is the main enzyme for the C-terminal processing of angiotensin peptides in human umbilical vein and aortic endothelial cells. For the first time the contribution of PRCP was investigated by use of a selective PRCP-inhibitor.


Assuntos
Angiotensina III/metabolismo , Angiotensina II/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Aorta/metabolismo , Carboxipeptidases/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Angiotensina III/antagonistas & inibidores , Aorta/citologia , Aorta/efeitos dos fármacos , Carboxipeptidases/antagonistas & inibidores , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Peptídeos/farmacologia
4.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206648

RESUMO

The aim of this study was to investigate the C-terminal cleavage of (pyr)-apelin-13 in human endothelial cells with respect to the role and subcellular location of prolyl carboxypeptidase (PRCP). Human umbilical vein and aortic endothelial cells, pre-treated with prolyl carboxypeptidase-inhibitor compound 8o and/or angiotensin converting enzyme 2 (ACE2)-inhibitor DX600, were incubated with (pyr)-apelin-13 for different time periods. Cleavage products of (pyr)-apelin-13 in the supernatant were identified by mass spectrometry. The subcellular location of PRCP was examined via immunocytochemistry. In addition, PRCP activity was measured in supernatants and cell lysates of LPS-, TNFα-, and IL-1ß-stimulated cells. PRCP cleaved (pyr)-apelin-13 in human umbilical vein and aortic endothelial cells, while ACE2 only contributed to this cleavage in aortic endothelial cells. PRCP was found in endothelial cell lysosomes. Pro-inflammatory stimulation induced the secretion of PRCP in the extracellular environment of endothelial cells, while its intracellular level remained intact. In conclusion, PRCP, observed in endothelial lysosomes, is responsible for the C-terminal cleavage of (pyr)-apelin-13 in human umbilical vein endothelial cells, while in aortic endothelial cells ACE2 also contributes to this cleavage. These results pave the way to further elucidate the relevance of the C-terminal Phe of (pyr)-apelin-13.


Assuntos
Aorta/citologia , Carboxipeptidases/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Linhagem Celular , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Peptídeos/sangue , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Front Pharmacol ; 12: 682065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248633

RESUMO

Background: A protease/antiprotease disbalance is observed in inflammatory bowel diseases (IBD). We therefore studied the effect of the novel serine protease inhibitor UAMC-00050 on intestinal inflammation and permeability in a chronic colitis T cell transfer mouse model to get further insight into the regulation of T cell-mediated immunopathology. Methods: Colitis was induced in severe combined immunodeficient (SCID) mice, by the adoptive transfer of CD4+CD25-CD62L+ T cells. Animals were treated intraperitoneally (i.p.) 2x/day with vehicle or UAMC-00050 (5 mg/kg) from week 2 onwards. Colonic inflammation was assessed by clinical parameters, colonoscopy, macroscopy, microscopy, myeloperoxidase activity and cytokine expression levels. At week 4, 4 kDa FITC-dextran intestinal permeability was evaluated and T helper transcription factors, protease-activated receptors and junctional proteins were quantified by RT-qPCR. Results: Adoptive transfer of CD4+CD25-CD62L+ T cells resulted in colonic inflammation and an altered intestinal permeability. The serine protease inhibitor UAMC-00050 ameliorated both the inflammatory parameters and the intestinal barrier function. Furthermore, a decrease in colonic mRNA expression of Tbet and PAR4 was observed in colitis mice after UAMC-00050 treatment. Conclusion: The beneficial effect of UAMC-00050 on inflammation was apparent via a reduction of Tbet, IFN-γ, TNF-α, IL-1ß and IL-6. Based on these results, we hypothesize a pivotal effect of serine protease inhibition on the Th1 inflammatory profile potentially mediated via PAR4.

6.
Front Chem ; 9: 640566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996747

RESUMO

Fibroblast activation protein (FAP) is a proline-selective protease that belongs to the S9 family of serine proteases. It is typically highly expressed in the tumor microenvironment (TME) and especially in cancer-associated fibroblasts, the main cell components of the tumor stroma. The exact role of its enzymatic activity in the TME remains largely unknown. Hence, tools that enable selective, activity-based visualization of FAP within the TME can help to unravel FAP's function. We describe the synthesis, biochemical characterization, and application of three different activity-based probes (biotin-, Cy3-, and Cy5-labeled) based on the FAP-inhibitor UAMC1110, an in-house developed molecule considered to be the most potent and selective FAP inhibitor available. We demonstrate that the three probes have subnanomolar FAP affinity and pronounced selectivity with respect to the related S9 family members. Furthermore, we report that the fluorescent Cy3- and Cy5-labeled probes are capable of selectively detecting FAP in a cellular context, making these chemical probes highly suitable for further biological studies. Moreover, proof of concept is provided for in situ FAP activity staining in patient-derived cryosections of urothelial tumors.

7.
Sci Rep ; 10(1): 17268, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057006

RESUMO

Dry eye syndrome (DES), a multifactorial disorder which leads to ocular discomfort, visual disturbance and tear film instability, has a rising prevalence and limited treatment options. In this study, a newly developed trypsin-like serine protease inhibitor (UAMC-00050) in a tear drop formulation was evaluated to treat ocular inflammation. A surgical animal model of dry eye was employed to investigate the potential of UAMC-00050 on dry eye pathology. Animals treated with UAMC-00050 displayed a significant reduction in ocular surface damage after evaluation with sodium fluorescein, compared to untreated, vehicle treated and cyclosporine-treated animals. The concentrations of IL-1α and TNF-α were also significantly reduced in tear fluid from UAMC-00050-treated rats. Additionally, inflammatory cell infiltration in the palpebral conjunctiva (CD3 and CD45), was substantially reduced. An accumulation of pro-MMP-9 and a decrease in active MMP-9 were found in tear fluid from animals treated with UAMC-00050, suggesting that trypsin-like serine proteases play a role in activating MMP-9 in ocular inflammation in this animal model. Comparative qRT-PCR analyses on ocular tissue indicated the upregulation of tryptase, urokinase plasminogen activator receptor (uPAR) and protease-activated receptor 2 (PAR2). The developed UAMC-00050 formulation was stable up to 6 months at room temperature in the absence of light, non-irritating and sterile with compatible pH and osmolarity. These results provide a proof-of-concept for the in vivo modifying potential of UAMC-00050 on dry eye pathology and suggest a central role of trypsin-like serine proteases and PAR2 in dry eye derived ocular inflammation.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/imunologia , Inibidores de Serina Proteinase/administração & dosagem , Animais , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/imunologia , Modelos Animais de Doenças , Síndromes do Olho Seco/genética , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Ratos , Ratos Wistar , Inibidores de Serina Proteinase/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
8.
PLoS One ; 15(4): e0231555, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315321

RESUMO

The proline-specific enzymes dipeptidyl peptidase 4 (DPP4), prolylcarboxypeptidase (PRCP), fibroblast activation protein α (FAP) and prolyl oligopeptidase (PREP) are known for their involvement in the immune system and blood pressure regulation. Only very limited information is currently available on their enzymatic activity and possible involvement in patients with sepsis and septic-shock. The activity of the enzymes was measured in EDTA-plasma of patients admitted to the intensive care unit (ICU): 40 septic shock patients (sepsis-2) and 22 ICU control patients after major intracranial surgery. These data were used to generate receiver operating characteristic (ROC) curves. A survival analysis (at 90 days) and an association study with other parameters was performed. PRCP (day 1) and PREP (all days) enzymatic activities were higher in septic shock patients compared to controls. In contrast, FAP and DPP4 were lower in these patients on all studied time points. Since large differences were found, ROC curves were generated and these yielded area under the curve (AUC) values for PREP, FAP and DPP4 of 0.88 (CI: 0.80-0.96), 0.94 (CI: 0.89-0.99) and 0.86 (CI: 0.77-0.95), respectively. PRCP had a lower predicting value with an AUC of 0.71 (CI: 0.58-0.83). A nominally significant association was observed between survival and the DPP4 enzymatic activity at day 1 (p<0.05), with a higher DPP4 activity being associated with an increase in survival. All four enzymes were dysregulated in septic shock patients. DPP4, FAP and PREP are good in discriminating between septic shock patients and ICU controls and should be further explored to see whether they are already dysregulated in earlier stages, opening perspectives for their further investigation as biomarkers in sepsis. DPP4 also shows potential as a prognostic biomarker. Additionally, the associations found warrant further research.


Assuntos
Carboxipeptidases/sangue , Dipeptidil Peptidase 4/sangue , Gelatinases/sangue , Proteínas de Membrana/sangue , Serina Endopeptidases/sangue , Choque Séptico/sangue , Choque Séptico/enzimologia , Área Sob a Curva , Biomarcadores/sangue , Cuidados Críticos , Endopeptidases , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prolina/metabolismo , Prolil Oligopeptidases , Estudos Prospectivos , Curva ROC , Choque Séptico/mortalidade , Choque Séptico/terapia , Análise de Sobrevida
9.
ACS Med Chem Lett ; 10(8): 1173-1179, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413802

RESUMO

Fibroblast activation protein (FAP) is a proline-selective serine protease. It is hardly expressed in healthy adult tissue but upregulated in tissue remodeling sites associated with several diseases including epithelial cancer types, atherosclerosis, arthritis and fibrosis. Ongoing research aims at clinical implementation of FAP as a biomarker for these diseases. Several immunochemical methods that quantify FAP expression have been reported. An alternative/complementary approach focuses on quantification of FAP's enzymatic activity. Developing an activity-based assay for FAP has nonetheless proven challenging because of selectivity issues with respect to prolyl oligopeptidase (PREP). Here, we present substrate-type FAP probes that are structurally derived from a FAP-inhibitor (UAMC1110) that we published earlier. Both cleavage efficiency and FAP-selectivity of the best compounds in the series equal or surpass the most advanced peptide-based FAP substrates reported to date. Finally, proof-of-concept is provided that 4-aminonaphthol containing probes can spatially localize FAP activity in biological samples.

10.
Clin Chim Acta ; 495: 154-160, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30981844

RESUMO

BACKGROUND: Fibroblast activiation protein alpha (FAP) is considered a diagnostic and prognostic biomarker for various types of cancer. FAP shares substrate specificity with prolyl oligopeptidase (PREP), studied in (neuro)inflammation and neurodegeneration as well as cancer. Current assays inadequately discriminate between FAP and PREP and there is need for an assay that reliably quantitates the FAP/PREP activity ratio in plasma. METHODS: FAP and PREP activities were measured in human EDTA-plasma in presence of well characterized PREP and FAP inhibitors. RESULTS: A combined kinetic assay was developed in conditions to optimally measure FAP as well as PREP activity with Z-Gly-Pro-AMC as substrate. Limit of detection was 0.009 U/L and limit of quantitation was 0.027 U/L for the combined FAP-PREP assay. Within-run coefficient of variation was 3% and 4% and between-run precision was 7% and 12% for PREP and FAP, respectively. Accuracy was demonstrated by comparison with established end-point assays. Hemolysis interferes with the assay with 1.5 g/L hemoglobin as cut-off value. PREP (but not FAP) activity can increase upon lysis of platelets and red blood cells during sample preparation. CONCLUSION: With this new assay, on average 67% of the Z-Gly-Pro-AMC converting activity in plasma can be attributed to FAP.


Assuntos
Análise Química do Sangue/métodos , Fluorometria/métodos , Gelatinases/sangue , Proteínas de Membrana/sangue , Serina Endopeptidases/sangue , Plaquetas/química , Endopeptidases , Hemólise , Humanos , Cinética , Limite de Detecção , Modelos Lineares , Prolil Oligopeptidases
11.
Life Sci Alliance ; 2(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718379

RESUMO

Activating germline mutations in the human inflammasome sensor NLRP1 causes palmoplantar dyskeratosis and susceptibility to Mendelian autoinflammatory diseases. Recent studies have shown that the cytosolic serine dipeptidyl peptidases DPP8 and DPP9 suppress inflammasome activation upstream of NLRP1 and CARD8 in human keratinocytes and peripheral blood mononuclear cells. Moreover, pharmacological inhibition of DPP8/DPP9 protease activity was shown to induce pyroptosis in murine C57BL/6 macrophages without eliciting other inflammasome hallmark responses. Here, we show that DPP8/DPP9 inhibition in macrophages that express a Bacillus anthracis lethal toxin (LeTx)-sensitive Nlrp1b allele triggered significantly accelerated pyroptosis concomitant with caspase-1 maturation, ASC speck assembly, and secretion of mature IL-1ß and IL-18. Genetic ablation of ASC prevented DPP8/DPP9 inhibition-induced caspase-1 maturation and partially hampered pyroptosis and inflammasome-dependent cytokine release, whereas deletion of caspase-1 or gasdermin D triggered apoptosis in the absence of IL-1ß and IL-18 secretion. In conclusion, blockade of DPP8/DPP9 protease activity triggers rapid pyroptosis and canonical inflammasome hallmarks in primary macrophages that express a LeTx-responsive Nlrp1b allele.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Inflamassomos/metabolismo , Macrófagos/metabolismo , Alelos , Animais , Antígenos de Bactérias , Apoptose/efeitos dos fármacos , Toxinas Bacterianas , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/farmacologia , Proteínas Adaptadoras de Sinalização CARD/genética , Caspase 1/metabolismo , Linhagem Celular , Dipeptídeos/administração & dosagem , Dipeptídeos/farmacologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piroptose/efeitos dos fármacos
12.
Br J Pharmacol ; 175(17): 3516-3533, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29911328

RESUMO

BACKGROUND AND PURPOSE: Serine proteases have been re suggested as important mediators of visceral pain. We investigated their effect by using newly developed serine protease inhibitors with a well-characterized inhibitory profile in a rat model of post-inflammatory irritable bowel syndrome (IBS). EXPERIMENTAL APPROACH: Colitis was induced in rats receiving intrarectal trinitrobenzenesulphonic acid; controls received 0.9% NaCl. Colonoscopies were performed on day 3, to confirm colitis, and later until mucosal healing. Visceral hypersensitivity was quantified by visceromotor responses (VMRs) to colorectal distension, 30 min after i.p. injection of the serine protease inhibitors nafamostat, UAMC-00050 or UAMC-01162. Serine proteases, protease-activated receptors (PARs) and TRP channels were quantified by qPCR and immunohistochemistry. Proteolytic activity was characterized using fluorogenic substrates. KEY RESULTS: VMR was significantly elevated in post-colitis rats. Nafamostat normalized VMRs at the lowest dose tested. UAMC-00050 and UAMC-01162 significantly decreased VMR dose-dependently. Expression of mRNA for tryptase-αß-1and PAR4, and tryptase immunoreactivity was significantly increased in the colon of post-colitis animals. Trypsin-like activity was also significantly increased in the colon but not in the faeces. PAR2 and TRPA1 immunoreactivity co-localized with CGRP-positive nerve fibres in control and post-colitis animals. CONCLUSIONS AND IMPLICATIONS: Increased expression of serine proteases and activity together with increased expression of downstream molecules at the colonic and DRG level and in CGRP-positive sensory nerve fibres imply a role for serine proteases in post-inflammatory visceral hypersensitivity. Our results support further investigation of serine protease inhibitors as an interesting treatment strategy for IBS-related visceral pain.


Assuntos
Síndrome do Intestino Irritável/tratamento farmacológico , Inibidores de Serina Proteinase/uso terapêutico , Dor Visceral/fisiopatologia , Animais , Modelos Animais de Doenças , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
13.
PLoS One ; 13(5): e0197603, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29772029

RESUMO

BACKGROUND: Prolyl carboxypeptidase (PRCP) is involved in the regulation of body weight, likely by hydrolysing alpha-melanocyte-stimulating hormone and apelin in the hypothalamus and in the periphery. A link between PRCP protein concentrations in plasma and metabolic disorders has been reported. In this study, we investigated the distribution of circulating PRCP activity and assessed its relation with body weight and adipose tissue in obese patients and patients who significantly lost weight. METHODS: PRCP activity was measured using reversed-phase high-performance liquid chromatography in different isolated blood fractions and primary human cells to investigate the distribution of circulating PRCP. PRCP activity was measured in serum of individuals (n = 75) categorized based on their body mass index (BMI < 25.0; 25.0-29.9; 30.0-39.9; ≥ 40.0 kg/m2) and the diagnosis of metabolic syndrome. Differences in serum PRCP activity were determined before and six months after weight loss, either by diet (n = 45) or by bariatric surgery (n = 24). Potential correlations between serum PRCP activity and several metabolic and biochemical parameters were assessed. Additionally, plasma PRCP concentrations were quantified using a sensitive ELISA in the bariatric surgery group. RESULTS: White blood cells and plasma contributed the most to circulating PRCP activity. Serum PRCP activity in lean subjects was 0.83 ± 0.04 U/L and increased significantly with a rising BMI (p<0.001) and decreased upon weight loss (diet, p<0.05; bariatric surgery, p<0.001). The serum PRCP activity alteration reflected body weight changes and was found to be positively correlated with several metabolic parameters, including: total, abdominal and visceral adipose tissue. Plasma PRCP concentration was found to be significantly correlated to serum PRCP activity (0.865; p<0.001). Additionally, a significant decrease (p<0.001) in plasma PRCP protein concentration (mean ± SD) before (18.2 ± 3.7 ng/mL) and 6 months after bariatric surgery (15.7 ± 2.7 ng/mL) was found. CONCLUSION: Our novel findings demonstrate that white blood cells and plasma contributed the most to circulating PRCP activity. Additionally, we have shown that there were significant correlations between serum PRCP activity and various metabolic parameters, and that plasma PRCP concentration was significantly correlated to serum PRCP activity. These novel findings on PRCP activity in serum support further investigation of its in vivo role and involvement in several metabolic diseases.


Assuntos
Tecido Adiposo/química , Peso Corporal , Carboxipeptidases/sangue , Obesidade/enzimologia , Magreza/enzimologia , Adulto , Antropometria , Aorta , Cirurgia Bariátrica , Células Sanguíneas/enzimologia , Dieta Redutora , Células Endoteliais/enzimologia , Feminino , Humanos , Macrófagos/enzimologia , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/enzimologia , Obesidade/dietoterapia , Obesidade/cirurgia , Plasma/enzimologia , Ativação Plaquetária , Plasma Rico em Plaquetas/enzimologia , Redução de Peso
14.
Eur J Med Chem ; 139: 482-491, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28826083

RESUMO

The Gram-negative anaerobe Porphyromonas gingivalis is associated with chronic periodontitis. Clinical isolates of P. gingivalis strains with high dipeptidyl peptidase 4 (DPP4) expression also had a high capacity for biofilm formation and were more infective. The X-ray crystal structure of P. gingivalis DPP4 was solved at 2.2 Å resolution. Despite a sequence identity of 32%, the overall structure of the dimer was conserved between P. gingivalis DPP4 and mammalian orthologues. The structures of the substrate binding sites were also conserved, except for the region called S2-extensive, which is exploited by specific human DPP4 inhibitors currently used as antidiabetic drugs. Screening of a collection of 450 compounds as inhibitors revealed a structure-activity relationship that mimics in part that of mammalian DPP9. The functional similarity between human and bacterial DPP4 was confirmed using 124 potential peptide substrates.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Porphyromonas gingivalis/enzimologia , Cristalografia por Raios X , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
15.
Ann Transl Med ; 5(6): 130, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28462210

RESUMO

The pathophysiology of lung diseases is very complex and proteolytic enzymes may play a role or could be used as biomarkers. In this review, the literature was searched to make an overview of what is known on the expression of the proline-specific peptidases dipeptidyl peptidase (DPP) 4, 8, 9, prolyl oligopeptidase (PREP) and fibroblast activation protein α (FAP) in the healthy and diseased lung. Search terms included asthma, chronic obstructive pulmonary disease (COPD), lung cancer, fibrosis, ischemia reperfusion injury and pneumonia. Knowledge on the loss or gain of protein expression and activity during disease might tie these enzymes to certain cell types, substrates or interaction partners that are involved in the pathophysiology of the disease, ultimately leading to the elucidation of their functional roles and a potential therapeutic target. Most data could be found on DPP4, while the other enzymes are less explored. Published data however often appear to be conflicting, the applied methods divers and the specificity of the assays used questionable. In conclusion, information on the expression of the proline-specific peptidases in the healthy and diseased lung is lacking, begging for further well-designed research.

16.
World J Gastroenterol ; 23(12): 2106-2123, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28405139

RESUMO

The gastrointestinal barrier is - with approximately 400 m2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.


Assuntos
Inflamação/fisiopatologia , Intestinos/patologia , Peptídeo Hidrolases/metabolismo , Animais , Diabetes Mellitus Tipo 1/fisiopatologia , Eletrólitos , Células Epiteliais/metabolismo , Humanos , Doenças Inflamatórias Intestinais/fisiopatologia , Inibidores de Metaloproteinases de Matriz/química , Camundongos , Permeabilidade , Inibidores de Proteases/química , Inibidores de Serina Proteinase/química , Junções Íntimas , Resultado do Tratamento
17.
Eur J Med Chem ; 123: 631-638, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27517808

RESUMO

Atg4B is a cysteine hydrolase that plays a key role in autophagy. Although it has been proposed as an attractive drug target, inhibitor discovery has proven highly challenging. The absence of a standardized, easily implementable enzyme activity/inhibition assay for Atg4B most likely contributes to this situation. Therefore, three different assay types for Atg4B activity/inhibition quantification were first compared: (1) an approach using fluorogenic Atg4B-substrates, (2) an in-gel densitometric quantification assay and (3) a thermal shift protocol. The gel-based approach showed the most promising results and was validated for screening of potential Atg4B inhibitors. A set of 8 literature inhibitors was included. Remarkably, in our hands only 2 literature references were found to have measurable Atg4B affinity. Furthermore, a fragment library (n = 182) was tested for Atg4B inhibition. One library member showed inhibition at high micromolar concentration and was found fit for further, fragment-based inhibitor design.


Assuntos
Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Ensaios Enzimáticos , Inibidores de Cisteína Proteinase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Eletroforese , Humanos , Temperatura
18.
J Cell Sci ; 129(20): 3792-3802, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27566163

RESUMO

Membrane-associated glycoprotein neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) play an important role in brain plasticity by regulating cell-cell interactions. Here, we demonstrate that the cytosolic serine protease prolyl endopeptidase (PREP) is able to regulate NCAM and PSA-NCAM. Using a SH-SY5Y neuroblastoma cell line with stable overexpression of PREP, we found a remarkable loss of PSA-NCAM, reduced levels of NCAM180 and NCAM140 protein species, and a significant increase in the NCAM immunoreactive band migrating at an apparent molecular weight of 120 kDa in PREP-overexpressing cells. Moreover, increased levels of NCAM fragments were found in the concentrated medium derived from PREP-overexpressing cells. PREP overexpression selectively induced an activation of matrix metalloproteinase-9 (MMP-9), which could be involved in the observed degradation of NCAM, as MMP-9 neutralization reduced the levels of NCAM fragments in cell culture medium. We propose that increased PREP levels promote epidermal growth factor receptor (EGFR) signaling, which in turn activates MMP-9. In conclusion, our findings provide evidence for newly-discovered roles for PREP in mechanisms regulating cellular plasticity through NCAM and PSA-NCAM.


Assuntos
Moléculas de Adesão de Célula Nervosa/metabolismo , Proteólise , Serina Endopeptidases/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultura , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Metaloproteinase 9 da Matriz/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Prolil Oligopeptidases , Proteólise/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes/farmacologia , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo
19.
Exp Eye Res ; 146: 172-178, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26995142

RESUMO

The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ciclosporinas/uso terapêutico , Dexametasona/uso terapêutico , Síndromes do Olho Seco/tratamento farmacológico , Imunossupressores/uso terapêutico , Animais , Túnica Conjuntiva/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Feminino , Fluoresceína/metabolismo , Imuno-Histoquímica , Aparelho Lacrimal/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Soluções Oftálmicas/farmacologia , Ratos , Ratos Wistar , Lágrimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
World J Gastroenterol ; 22(47): 10275-10286, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28058009

RESUMO

Proteases, enzymes catalyzing the hydrolysis of peptide bonds, are present at high concentrations in the gastrointestinal tract. Besides their well-known role in the digestive process, they also function as signaling molecules through the activation of protease-activated receptors (PARs). Based on their chemical mechanism for catalysis, proteases can be classified into several classes: serine, cysteine, aspartic, metallo- and threonine proteases represent the mammalian protease families. In particular, the class of serine proteases will play a significant role in this review. In the last decades, proteases have been suggested to play a key role in the pathogenesis of visceral hypersensitivity, which is a major factor contributing to abdominal pain in patients with inflammatory bowel diseases and/or irritable bowel syndrome. So far, only a few preclinical animal studies have investigated the effect of protease inhibitors specifically on visceral sensitivity while their effect on inflammation is described in more detail. In our accompanying review we describe their effect on gastrointestinal permeability. On account of their promising results in the field of visceral hypersensitivity, further research is warranted. The aim of this review is to give an overview on the concept of visceral hypersensitivity as well as on the physiological and pathophysiological functions of proteases herein.


Assuntos
Dor Abdominal/etiologia , Hiperalgesia/etiologia , Doenças Inflamatórias Intestinais/complicações , Intestinos/enzimologia , Síndrome do Intestino Irritável/complicações , Peptídeo Hidrolases/metabolismo , Dor Abdominal/tratamento farmacológico , Dor Abdominal/enzimologia , Dor Abdominal/fisiopatologia , Animais , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/fisiopatologia , Absorção Intestinal , Intestinos/inervação , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/enzimologia , Síndrome do Intestino Irritável/fisiopatologia , Permeabilidade , Inibidores de Proteases/uso terapêutico , Receptores Ativados por Proteinase/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA