Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 157, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997110

RESUMO

The objective of this work was to assess the consequences of repeated intra-articular injection of monosodium urate (MSU) crystals with inflammasome priming by lipopolysaccharide (LPS) in order to simulate recurrent bouts of gout in rats. Translational imaging was applied to simultaneously detect and quantify injury in different areas of the knee joint. MSU/LPS induced joint swelling, synovial membrane thickening, fibrosis of the infrapatellar fat pad, tidemark breaching, and cartilage invasion by inflammatory cells. A higher sensitivity to mechanical stimulus was detected in paws of limbs receiving MSU/LPS compared to saline-injected limbs. In MSU/LPS-challenged joints, magnetic resonance imaging (MRI) revealed increased synovial fluid volume in the posterior region of the joint, alterations in the infrapatellar fat pad reflecting a progressive decrease of fat volume and fibrosis formation, and a significant increase in the relaxation time T2 in femoral cartilage, consistent with a reduction of proteoglycan content. MRI also showed cyst formation in the tibia, femur remodeling, and T2 reductions in extensor muscles consistent with fibrosis development. Repeated intra-articular MSU/LPS injections in the rat knee joint induced pathology in multiple tissues and may be a useful means to investigate the relationship between urate crystal deposition and the development of degenerative joint disease.


Assuntos
Artrite Gotosa/diagnóstico por imagem , Articulações/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ácido Úrico , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Artrite Gotosa/patologia , Biópsia , Cristalização , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Mediadores da Inflamação/metabolismo , Injeções Intra-Articulares , Articulações/metabolismo , Articulações/patologia , Lipopolissacarídeos , Valor Preditivo dos Testes , Ratos , Ratos Endogâmicos Lew , Líquido Sinovial/metabolismo , Fatores de Tempo , Pesquisa Translacional Biomédica , Microtomografia por Raio-X
2.
Neuroimage ; 238: 118231, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089871

RESUMO

The ventralis intermedius nucleus (Vim) is centrally placed in the dentato-thalamo-cortical pathway (DTCp) and is a key surgical target in the treatment of severe medically refractory tremor. It is not visible on conventional MRI sequences; consequently, stereotactic targeting currently relies on atlas-based coordinates. This fails to capture individual anatomical variability, which may lead to poor long-term clinical efficacy. Probabilistic tractography, combined with known anatomical connectivity, enables localisation of thalamic nuclei at an individual subject level. There are, however, a number of confounds associated with this technique that may influence results. Here we focused on an established method, using probabilistic tractography to reconstruct the DTCp, to identify the connectivity-defined Vim (cd-Vim) in vivo. Using 100 healthy individuals from the Human Connectome Project, our aim was to quantify cd-Vim variability across this population, measure the discrepancy with atlas-defined Vim (ad-Vim), and assess the influence of potential methodological confounds. We found no significant effect of any of the confounds. The mean cd-Vim coordinate was located within 1.88 mm (left) and 2.12 mm (right) of the average midpoint and 3.98 mm (left) and 5.41 mm (right) from the ad-Vim coordinates. cd-Vim location was more variable on the right, which reflects hemispheric asymmetries in the probabilistic DTC reconstructed. The method was reproducible, with no significant cd-Vim location differences in a separate test-retest cohort. The superior cerebellar peduncle was identified as a potential source of artificial variance. This work demonstrates significant individual anatomical variability of the cd-Vim that atlas-based coordinate targeting fails to capture. This variability was not related to any methodological confound tested. Lateralisation of cerebellar functions, such as speech, may contribute to the observed asymmetry. Tractography-based methods seem sensitive to individual anatomical variability that is missed by conventional neurosurgical targeting; these findings may form the basis for translational tools to improve efficacy and reduce side-effects of thalamic surgery for tremor.


Assuntos
Imagem de Tensor de Difusão/métodos , Rede Nervosa/anatomia & histologia , Núcleos Ventrais do Tálamo/anatomia & histologia , Adulto , Variação Biológica Individual , Núcleos Cerebelares/anatomia & histologia , Cerebelo/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Fatores de Confusão Epidemiológicos , Conectoma , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Probabilidade , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Adulto Jovem
3.
J Cachexia Sarcopenia Muscle ; 11(1): 195-207, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31436048

RESUMO

BACKGROUND: The majority of patients with advanced cancer develop cachexia, a weight loss syndrome that severely reduces quality of life and limits survival. Our understanding of the underlying mechanisms that cause the condition is limited, and there are currently no treatment options that can completely reverse cachexia. Several tumour-derived factors and inflammatory mediators have been suggested to contribute to weight loss in cachectic patients. However, inconsistencies between studies are recurrent. Activin A and interleukin 6 (IL-6) are among the best studied factors that seem to be important, and several studies support their individual role in cachexia development. METHODS: We investigated the interplay between activin A and IL-6 in the cachexia-inducing TOV21G cell line, both in culture and in tumours in mice. We previously found that the human TOV21G cells secrete IL-6 that induces autophagy in reporter cells and cachexia in mice. Using this established cachexia cell model, we targeted autocrine activin A by genetic, chemical, and biological approaches. The secretion of IL-6 from the cancer cells was determined in both culture and tumour-bearing mice by a species-specific ELISA. Autophagy reporter cells were used to monitor the culture medium for autophagy-inducing activities, and muscle mass changes were evaluated in tumour-bearing mice. RESULTS: We show that activin A acts in an autocrine manner to promote the synthesis and secretion of IL-6 from cancer cells. By inhibiting activin A signalling, the production of IL-6 from the cancer cells is reduced by 40-50% (up to 42% reduction on protein level, P = 0.0048, and 48% reduction on mRNA level, P = 0.0308). Significantly reduced IL-6 secretion (P < 0.05) from the cancer cells is consistently observed when using biological, chemical, and genetic approaches to interfere with the autocrine activin A loop. Inhibiting activin signalling also reduces the ability of the cancer cells to accelerate autophagy in non-cancerous cells (up to 43% reduced autophagy flux, P = 0.0006). Coherent to the in vitro data, the use of an anti-activin receptor 2 antibody in cachectic tumour-bearing mice reduces serum levels of cancer cell-derived IL-6 by 62% (from 417 to 159 pg/mL, P = 0.03), and, importantly, it reverses cachexia and counteracts loss of all measured muscle groups (P < 0.0005). CONCLUSIONS: Our data support a functional link between activin A and IL-6 signalling pathways and indicate that interference with activin A-induced IL-6 secretion from the tumour has therapeutic potential for cancer-induced cachexia.


Assuntos
Ativinas/metabolismo , Comunicação Autócrina/fisiologia , Autofagia/genética , Caquexia/genética , Interleucina-6/metabolismo , Neoplasias Ovarianas/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Transdução de Sinais
4.
Cell Rep ; 29(6): 1539-1554.e7, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693894

RESUMO

Age-related loss of skeletal muscle innervation by motor neurons leads to impaired neuromuscular function and is a well-established clinical phenomenon. However, the underlying pathogenesis remains unclear. Studying mice, we find that the number of motor units (MUs) can be maintained by counteracting neurotoxic microglia in the aged spinal cord. We observe that marked innervation changes, detected by motor unit number estimation (MUNE), occur prior to loss of muscle function in aged mice. This coincides with gene expression changes indicative of neuronal remodeling and microglial activation in aged spinal cord. Voluntary exercise prevents loss of MUs and reverses microglia activation. Depleting microglia by CSF1R inhibition also prevents the age-related decline in MUNE and neuromuscular junction disruption, implying a causal link. Our results suggest that age-related changes in spinal cord microglia contribute to neuromuscular decline in aged mice and demonstrate that removal of aged neurotoxic microglia can prevent or reverse MU loss.


Assuntos
Envelhecimento/metabolismo , Microglia/metabolismo , Neurônios Motores/metabolismo , Condicionamento Físico Animal/fisiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Envelhecimento/patologia , Animais , Linhagem Celular , Bases de Dados Genéticas , Humanos , Células-Tronco Pluripotentes Induzidas , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/enzimologia , Microglia/fisiologia , Neurônios Motores/citologia , Neurônios Motores/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/metabolismo , Plasticidade Neuronal/genética , RNA-Seq , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Medula Espinal/enzimologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
5.
PLoS One ; 9(1): e83618, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404136

RESUMO

BACKGROUND: Cachexia affects the majority of patients with advanced cancer and is associated with a reduction in treatment tolerance, response to therapy, and duration of survival. One impediment towards the effective treatment of cachexia is a validated classification system. METHODS: 41 patients with resectable upper gastrointestinal (GI) or pancreatic cancer underwent characterisation for cachexia based on weight-loss (WL) and/or low muscularity (LM). Four diagnostic criteria were used >5%WL, >10%WL, LM, and LM+>2%WL. All patients underwent biopsy of the rectus muscle. Analysis included immunohistochemistry for fibre size and type, protein and nucleic acid concentration, Western blots for markers of autophagy, SMAD signalling, and inflammation. FINDINGS: Compared with non-cachectic cancer patients, patients with LM or LM+>2%WL, mean muscle fibre diameter was reduced by about 25% (p = 0.02 and p = 0.001 respectively). No significant difference in fibre diameter was observed if patients had WL alone. Regardless of classification, there was no difference in fibre number or proportion of fibre type across all myosin heavy chain isoforms. Mean muscle protein content was reduced and the ratio of RNA/DNA decreased in patients with either >5%WL or LM+>2%WL. Compared with non-cachectic patients, SMAD3 protein levels were increased in patients with >5%WL (p = 0.022) and with >10%WL, beclin (p = 0.05) and ATG5 (p = 0.01) protein levels were increased. There were no differences in phospho-NFkB or phospho-STAT3 levels across any of the groups. CONCLUSION: Muscle fibre size, biochemical composition and pathway phenotype can vary according to whether the diagnostic criteria for cachexia are based on weight loss alone, a measure of low muscularity alone or a combination of the two. For intervention trials where the primary end-point is a change in muscle mass or function, use of combined diagnostic criteria may allow identification of a more homogeneous patient cohort, reduce the sample size required and enhance the time scale within which trials can be conducted.


Assuntos
Caquexia/diagnóstico , Caquexia/etiologia , Músculo Esquelético/patologia , Neoplasias/complicações , Fenótipo , Idoso , Autofagia , Biomarcadores , Índice de Massa Corporal , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Redução de Peso
6.
Cortex ; 49(10): 2875-87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23664001

RESUMO

The sight and sound of a person speaking or a ball bouncing may seem simultaneous, but their corresponding neural signals are spread out over time as they arrive at different multisensory brain sites. How subjective timing relates to such neural timing remains a fundamental neuroscientific and philosophical puzzle. A dominant assumption is that temporal coherence is achieved by sensory resynchronisation or recalibration across asynchronous brain events. This assumption is easily confirmed by estimating subjective audiovisual timing for groups of subjects, which is on average similar across different measures and stimuli, and approximately veridical. But few studies have examined normal and pathological individual differences in such measures. Case PH, with lesions in pons and basal ganglia, hears people speak before seeing their lips move. Temporal order judgements (TOJs) confirmed this: voices had to lag lip-movements (by ∼200 msec) to seem synchronous to PH. Curiously, voices had to lead lips (also by ∼200 msec) to maximise the McGurk illusion (a measure of audiovisual speech integration). On average across these measures, PH's timing was therefore still veridical. Age-matched control participants showed similar discrepancies. Indeed, normal individual differences in TOJ and McGurk timing correlated negatively: subjects needing an auditory lag for subjective simultaneity needed an auditory lead for maximal McGurk, and vice versa. This generalised to the Stream-Bounce illusion. Such surprising antagonism seems opposed to good sensory resynchronisation, yet average timing across tasks was still near-veridical. Our findings reveal remarkable disunity of audiovisual timing within and between subjects. To explain this we propose that the timing of audiovisual signals within different brain mechanisms is perceived relative to the average timing across mechanisms. Such renormalisation fully explains the curious antagonistic relationship between disparate timing estimates in PH and healthy participants, and how they can still perceive the timing of external events correctly, on average.


Assuntos
Percepção Auditiva/fisiologia , Transtornos Cognitivos/psicologia , Ilusões/psicologia , Percepção Visual/fisiologia , Estimulação Acústica , Adolescente , Adulto , Idoso , Envelhecimento/psicologia , Algoritmos , Atenção/fisiologia , Gânglios da Base/patologia , Transtornos Cognitivos/patologia , Simulação por Computador , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/complicações , Miastenia Gravis/psicologia , Estimulação Luminosa , Ponte/patologia , Psicometria , Percepção Espacial/fisiologia , Percepção da Fala/fisiologia , Adulto Jovem
7.
Neuroimage ; 60(1): 83-94, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22173294

RESUMO

The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Núcleo Subtalâmico/anatomia & histologia , Núcleo Subtalâmico/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino , Literatura de Revisão como Assunto
8.
Sci Signal ; 4(201): ra80, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22126963

RESUMO

Skeletal muscle atrophy results in loss of strength and an increased risk of mortality. We found that lysophosphatidic acid, which activates a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, stimulated skeletal muscle hypertrophy through activation of Gα(i2). Expression of a constitutively active mutant of Gα(i2) stimulated myotube growth and differentiation, effects that required the transcription factor NFAT (nuclear factor of activated T cells) and protein kinase C. In addition, expression of the constitutively active Gα(i2) mutant inhibited atrophy caused by the cachectic cytokine TNFα (tumor necrosis factor-α) by blocking an increase in the abundance of the mRNA encoding the E3 ubiquitin ligase MuRF1 (muscle ring finger 1). Gα(i2) activation also enhanced muscle regeneration and caused a switch to oxidative fibers. Our study thus identifies a pathway that promotes skeletal muscle hypertrophy and differentiation and demonstrates that Gα(i2)-induced signaling can act as a counterbalance to MuRF1-mediated atrophy, indicating that receptors that act through Gα(i2) might represent potential targets for preventing skeletal muscle wasting.


Assuntos
Diferenciação Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Mioblastos Esqueléticos/enzimologia , Regeneração , Transdução de Sinais , Animais , Ativação Enzimática/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Hipertrofia/enzimologia , Hipertrofia/genética , Hipertrofia/patologia , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/enzimologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mutação , Mioblastos Esqueléticos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas com Motivo Tripartido , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA