Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1036, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823422

RESUMO

Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Venenos de Escorpião , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Rianodina/farmacologia , Sequência de Aminoácidos , Peptídeos/química , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química
2.
Proc Natl Acad Sci U S A ; 120(4): e2117503120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649401

RESUMO

Resting skeletal muscle generates heat for endothermy in mammals but not amphibians, while both use the same Ca2+-handling proteins and membrane structures to conduct excitation-contraction coupling apart from having different ryanodine receptor (RyR) isoforms for Ca2+ release. The sarcoplasmic reticulum (SR) generates heat following Adenosine triphosphate (ATP) hydrolysis at the Ca2+ pump, which is amplified by increasing RyR1 Ca2+ leak in mammals, subsequently increasing cytoplasmic [Ca2+] ([Ca2+]cyto). For thermogenesis to be functional, rising [Ca2+]cyto must not interfere with cytoplasmic effectors of the sympathetic nervous system (SNS) that likely increase RyR1 Ca2+ leak; nor should it compromise the muscle remaining relaxed. To achieve this, Ca2+ activated, regenerative Ca2+ release that is robust in lower vertebrates needs to be suppressed in mammals. However, it has not been clear whether: i) the RyR1 can be opened by local increases in [Ca2+]cyto; and ii) downstream effectors of the SNS increase RyR Ca2+ leak and subsequently, heat generation. By positioning amphibian and malignant hyperthermia-susceptible human-skinned muscle fibers perpendicularly, we induced abrupt rises in [Ca2+]cyto under identical conditions optimized for activating regenerative Ca2+ release as Ca2+ waves passed through the junction of fibers. Only mammalian fibers showed resistance to rising [Ca2+]cyto, resulting in increased SR Ca2+ load and leak. Fiber heat output was increased by cyclic adenosine monophosphate (cAMP)-induced RyR1 phosphorylation at Ser2844 and Ca2+ leak, indicating likely SNS regulation of thermogenesis. Thermogenesis occurred despite the absence of SR Ca2+ pump regulator sarcolipin. Thus, evolutionary isolation of RyR1 provided increased dynamic range for thermogenesis with sensitivity to cAMP, supporting endothermy.


Assuntos
Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Isoformas de Proteínas/metabolismo , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Termogênese , Anfíbios
3.
Am J Physiol Cell Physiol ; 323(4): C1285-C1289, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094438

RESUMO

Ca2+ is an integral component of the functional and developmental regulation of the mitochondria. In skeletal muscle, Ca2+ is reported to modulate the rate of ATP resynthesis, regulate the expression of peroxisome proliferator-activated receptor-gamma coactivator 1 (PGC1α) following exercise, and drive the generation of reactive oxygen species (ROS). Due to the latter, mitochondrial Ca2+ overload is recognized as a pathophysiological event but the former events represent important physiological functions in need of tight regulation. Recently, we described the relationship between [Ca2+]mito and resting [Ca2+]cyto and other mitochondrial Ca2+-handling properties of skeletal muscle. An important next step is to understand the triggers for Ca2+ redistribution between intracellular compartments, which determine the mitochondrial Ca2+ load. These triggers in both physiological and pathophysiological scenarios can be traced to the coupled activity of the ryanodine receptor 1 (RyR1) and store-operated Ca2+ entry (SOCE) in the resting muscle. In this piece, we will discuss some issues regarding Ca2+ measurements relevant to mitochondrial Ca2+-handling, the steady-state relationship between cytoplasmic and mitochondrial Ca2+, and the potential implications for Ca2+ handling by muscle mitochondria and cellular function.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
4.
Sci Adv ; 7(44): eabi7166, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705503

RESUMO

Muscle contraction depends on tightly regulated Ca2+ release. Aberrant Ca2+ leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca2+ leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca2+ leak initiates a cascade of events that cause precise redistribution of Ca2+ among the SR, cytoplasm, and mitochondria through altering the Ca2+ permeability of the transverse tubular system membrane. This redistribution of Ca2+ allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations.

5.
Clin Exp Pharmacol Physiol ; 45(2): 146-154, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29044613

RESUMO

The contractile properties of vastus lateralis muscle fibres were examined in prostate cancer (PrCa) patients undergoing androgen deprivation therapy (ADT) and in age- and activity-matched healthy male subjects (Control). Mechanically-skinned muscle fibres were exposed to a sequence of heavily Ca2+ -buffered solutions at progressively higher free [Ca2+ ] to determine their force-Ca2+ relationship. Ca2+ -sensitivity was decreased in both type I and type II muscle fibres of ADT subjects relative to Controls (by -0.05 and -0.04 pCa units, respectively, P < .02), and specific force was around 13% lower in type I fibres of ADT subjects than in Controls (P = .02), whereas there was no significant difference in type II fibres. Treatment with the reducing agent dithiothreitol slightly increased specific force in type I and type II fibres of ADT subjects (by ~2%-3%, P < .05) but not in Controls. Pure type IIx fibres were found frequently in muscle from ADT subjects but not in Controls, and the overall percentage of myosin heavy chain IIx in muscle samples was 2.5 times higher in ADT subjects (P < .01). The findings suggest that testosterone suppression can negatively impact the contractile properties by (i) reducing Ca2+ -sensitivity in both type I and type II fibres and (ii) reducing maximum specific force in type I fibres.


Assuntos
Gosserrelina/uso terapêutico , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Neoplasias da Próstata/tratamento farmacológico , Idoso , Antagonistas de Androgênios , Antineoplásicos Hormonais/uso terapêutico , Humanos , Masculino
6.
Exp Gerontol ; 75: 8-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747222

RESUMO

Na(+), K(+)-ATPase (NKA) isoforms (α1,α2,α3,ß1,ß2,ß3) are involved in the maintenance of membrane potential and hence are important regulators of cellular homeostasis. Given the age-related decline in skeletal muscle function, we investigated whether the natural physiological process of aging is associated with altered abundance of NKA isoforms (α1,α2,α3,ß1,ß2,ß3) or of the commonly used control protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, measurements were made in both whole muscle or specific fiber types obtained from skeletal muscle biopsies. Seventeen healthy older (AGED, 69.4 ± 3.5 years, mean ± SD) and 14 younger (YOUNG, 25.5 ± 2.8 years) adults underwent a muscle biopsy for biochemical analyses. Comparing homogenates from AGED and YOUNG individuals revealed higher ß3 isoform (p<0.05) and lower GAPDH (p<0.05). Analysis of individual fibers in muscle from YOUNG individuals, showed greater α3 and ß2 isoforms, and more GAPDH in Type II compared with Type I fibers (p<0.05). In the AGED, GAPDH was higher in Type II compared with Type I fibers (p<0.05), there were no fiber type differences in the NKA isoforms (p>0.05). Compared with the same fiber type in YOUNG, α1 was greater (Type I) and α3 lower (Type II), while in both fiber types, ß2 was lower, ß3 greater and GAPDH lower, in muscle from AGED individuals (all p<0.05). Overall, we demonstrate that (i) GAPDH is an inappropriate choice of protein for normalization in all skeletal muscle research and (ii) full understanding of the role of NKA isoforms in human skeletal muscle requires consideration of age and muscle fiber type.


Assuntos
Envelhecimento/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/análise , Músculo Esquelético/enzimologia , ATPase Trocadora de Sódio-Potássio/análise , Adulto , Idoso , Envelhecimento/patologia , Feminino , Humanos , Isoenzimas/análise , Masculino , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Proteínas Musculares/análise , Músculo Esquelético/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA