RESUMO
Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.
RESUMO
Alternative splicing is known to remodel protein-protein interaction networks ("interactomes"), yet large-scale determination of isoform-specific interactions remains challenging. We present a domain-based method to predict the isoform interactome from the reference interactome. First, we construct the domain-resolved reference interactome by mapping known domain-domain interactions onto experimentally-determined interactions between reference proteins. Then, we construct the isoform interactome by predicting that an isoform loses an interaction if it loses the domain mediating the interaction. Our prediction framework is of high-quality when assessed by experimental data. The predicted human isoform interactome reveals extensive network remodeling by alternative splicing. Protein pairs interacting with different isoforms of the same gene tend to be more divergent in biological function, tissue expression, and disease phenotype than protein pairs interacting with the same isoforms. Our prediction method complements experimental efforts, and demonstrates that integrating structural domain information with interactomes provides insights into the functional impact of alternative splicing.