Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Extracell Vesicles ; 12(12): e12394, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38124258

RESUMO

Macrophages play major roles in the pathophysiology of various neurological disorders, being involved in seemingly opposing processes such as lesion progression and resolution. Yet, the molecular mechanisms that drive their harmful and benign effector functions remain poorly understood. Here, we demonstrate that extracellular vesicles (EVs) secreted by repair-associated macrophages (RAMs) enhance remyelination ex vivo and in vivo by promoting the differentiation of oligodendrocyte precursor cells (OPCs). Guided by lipidomic analysis and applying cholesterol depletion and enrichment strategies, we find that EVs released by RAMs show markedly elevated cholesterol levels and that cholesterol abundance controls their reparative impact on OPC maturation and remyelination. Mechanistically, EV-associated cholesterol was found to promote OPC differentiation predominantly through direct membrane fusion. Collectively, our findings highlight that EVs are essential for cholesterol trafficking in the brain and that changes in cholesterol abundance support the reparative impact of EVs released by macrophages in the brain, potentially having broad implications for therapeutic strategies aimed at promoting repair in neurodegenerative disorders.


Assuntos
Vesículas Extracelulares , Encéfalo , Macrófagos , Diferenciação Celular , Colesterol
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762617

RESUMO

Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots. In addition, functional assays were completed to determine the effect of L-PRF on neural stem cells (NSCs), primary cortical neurons (pCNs), and peripheral dorsal root ganglion (DRG) neurons. We observed that L-PRF consists of a dense but porous fibrin network, containing leukocytes and aggregates of activated platelets that are distributed throughout the clot. Antibody array and ELISA confirmed that it is a reservoir for a plethora of growth factors. Key molecules that are known to have an effect on neuronal cell functions such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) were slowly released over time from the clots. Next, we found that the L-PRF secretome had no significant effect on the proliferative and metabolic activity of NSCs, but it did act as a chemoattractant and improved the migration of these CNS-derived stem cells. More importantly, L-PRF growth factors had a detrimental effect on the survival of pCNs, and consequently, also interfered with their neurite outgrowth. In contrast, we found a positive effect on peripheral DRG neurons, and L-PRF growth factors improved their survival and significantly stimulated the outgrowth and branching of their neurites. Taken together, our study demonstrates the positive effects of the L-PRF secretome on peripheral neurons and supports its use in regenerative medicine but care should be taken when using it for CNS applications.


Assuntos
Materiais Biocompatíveis , Fibrina Rica em Plaquetas , Humanos , Fator A de Crescimento do Endotélio Vascular , Neurônios , Leucócitos , Sistema Nervoso Periférico
3.
Anat Histol Embryol ; 52(5): 770-777, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37278128

RESUMO

Mesenchymal stem cells (MSCs) are used for regenerative therapy. Dental pulp MSCs make extracted wisdom teeth a useful resource in humans. Preclinical validation of regenerative therapies requires large animal models such as the sheep. Since stem cells can be retrieved from the dental pulp of ovine incisors, the best age to extract a maximal volume of dental pulp needs to be defined. The objective of this ex vivo study was to quantify incisors dental pulp volume, in sheep of various age. Three jaws were dedicated to histology (one per age group); the others were imaged with a computed tomography scanner [3 years-old (n = 9), 4 (n = 3) and 6 (n = 5)]. The incisors dental pulp volume was measured after 3D reconstruction. Multiple linear regression showed that dental pulp volume of ovine incisors decreases with age (ß-estimate = -3.3; p < 0.0001) and teeth position from the more central to the more lateral (ß-estimate = -4.9; p = 0.0009). Weight was not a relevant variable in the regression model. The dental pulp volume ranged from 36.7 to 19.6 mm3 in 3-year-old sheep, from 23.6 to 11.3 in 4-year-old sheep, and from 19.4 to 11.5 in 6-year-old sheep. The pulp volume of the most central teeth (first intermediate) was significantly higher than the most lateral teeth (corner). Haematoxylin-Eosin-Safran of the whole incisors, and of isolated dental pulps demonstrated a similar morphology to that in humans. The first intermediate incisor of 3-year-old sheep should be selected preferentially in preclinical research to retrieve the highest volume of dental pulp.


Assuntos
Incisivo , Células-Tronco Mesenquimais , Ovinos , Humanos , Animais , Incisivo/diagnóstico por imagem , Polpa Dentária/diagnóstico por imagem , Modelos Lineares
4.
Microscopy (Oxf) ; 72(5): 388-394, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36574223

RESUMO

Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who have been admitted to the intensive care unit (ICU) often face months of physical disability after discharge. To optimize recovery, it is important to understand the role of musculoskeletal alterations in critically ill patients infected with SARS-CoV-2. The main aim of the present study was to describe the presence and morphology of nemaline bodies found in the skeletal muscle tissue from critically ill patients infected with SARS-CoV-2. In n = 7 patients infected with SARS-CoV-2, ultrastructural characteristics of vastus lateralis muscle obtained on days 1-3 and days 5-8 following ICU admission were investigated in more detail with electron microscopy. Those muscle biopsies consistently showed variable degrees of myofiber necrosis and myofibrillar disorganization. In 4/7 (57%) patients on days 5-8, the Z-line material accumulated into nemaline bodies with a typical lattice-like appearance at higher magnification, similar to that found in nemaline myopathy. This study is the first to describe the disintegration of myofibrils and the accumulation of Z-line material into nemaline bodies in the skeletal muscle tissue obtained from critically ill coronavirus disease-19 patients following ICU admission, which should be interpreted primarily as a non-specific pathological response of extreme myofibrillar disintegration associated with myofiber necrosis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/patologia , Estado Terminal , Músculo Esquelético , Biópsia , Necrose/patologia
5.
Brain Behav Immun ; 109: 1-22, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584795

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Inibidores da Fosfodiesterase 4 , Humanos , Camundongos , Animais , Bainha de Mielina/metabolismo , Esclerose Múltipla/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/uso terapêutico , Potenciais Evocados Visuais , Oligodendroglia/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Diferenciação Celular , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL
6.
Cell Rep ; 41(6): 111591, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351388

RESUMO

The progressive nature of demyelinating diseases lies in the inability of the central nervous system (CNS) to induce proper remyelination. Recently, we and others demonstrated that a dysregulated innate immune response partially underlies failure of CNS remyelination. Extensive accumulation of myelin-derived lipids and an inability to process these lipids was found to induce a disease-promoting phagocyte phenotype. Hence, restoring the ability of these phagocytes to metabolize and efflux myelin-derived lipids represents a promising strategy to promote remyelination. Here, we show that ApoA-I mimetic peptide 5A, a molecule well known to promote activity of the lipid efflux transporter ABCA1, markedly enhances remyelination. Mechanistically, we find that the repair-inducing properties of 5A are attributable to increased clearance and metabolism of remyelination-inhibiting myelin debris via the fatty acid translocase protein CD36, which is transcriptionally controlled by the ABCA1-JAK2-STAT3 signaling pathway. Altogether, our findings indicate that 5A promotes remyelination by stimulating clearance and degradation of myelin debris.


Assuntos
Doenças Desmielinizantes , Remielinização , Humanos , Remielinização/fisiologia , Bainha de Mielina/metabolismo , Doenças Desmielinizantes/metabolismo , Apolipoproteína A-I/metabolismo , Peptídeos/metabolismo
7.
Acta Neuropathol ; 144(3): 489-508, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796870

RESUMO

Blood-based (BB) biomarkers for Aß and tau can indicate pathological processes in the brain, in the early pathological, even pre-symptomatic stages in Alzheimer's disease. However, the relation between BB biomarkers and AD-related processes in the brain in the earliest pre-pathology stage before amyloid pathology develops, and their relation with total brain concentrations of Aß and tau, is poorly understood. This stage presents a critical window for the earliest prevention of AD. Preclinical models with well-defined temporal progression to robust amyloid and tau pathology provide a unique opportunity to study this relation and were used here to study the link between BB biomarkers with AD-related processes in pre- and pathological stages. We performed a cross-sectional study at different ages assessing the link between BB concentrations and AD-related processes in the brain. This was complemented with a longitudinal analysis and with analysis of age-related changes in a small cohort of human subjects. We found that BB-tau concentrations increased in serum, correlating with progressive development of tau pathology and with increasing tau aggregates and p-tau concentrations in brain in TauP301S mice (PS19) developing tauopathy. BB-Aß42 concentrations in serum decreased between 4.5 and 9 months of age, correlating with the progressive development of robust amyloid pathology in APP/PS1 (5xFAD) mice, in line with previous findings. Most importantly, BB-Aß42 concentrations significantly increased between 1.5 and 4.5 months, i.e., in the earliest pre-pathological stage, before robust amyloid pathology develops in the brain, indicating biphasic BB-Aß42 dynamics. Furthermore, increasing BB-Aß42 in the pre-pathological phase, strongly correlated with increasing Aß42 concentrations in brain. Our subsequent longitudinal analysis of BB-Aß42 in 5xFAD mice, confirmed biphasic BB-Aß42, with an initial increase, before decreasing with progressive robust pathology. Furthermore, in human samples, BB-Aß42 concentrations were significantly higher in old (> 60 years) compared to young (< 50 years) subjects, as well as to age-matched AD patients, further supporting age-dependent increase of Aß42 concentrations in the earliest pre-pathological phase, before amyloid pathology. Also BB-Aß40 concentrations were found to increase in the earliest pre-pathological phase both in preclinical models and human subjects, while subsequent significantly decreasing concentrations in the pathological phase were characteristic for BB-Aß42. Together our data indicate that BB biomarkers reflect pathological processes in brain of preclinical models with amyloid and tau pathology, both in the pathological and pre-pathological phase. Our data indicate a biphasic pattern of BB-Aß42 in preclinical models and a human cohort. And most importantly, we here show that BB-Aß increased and correlated with increasing concentrations of Aß in the brain, in the earliest pre-pathological stage in a preclinical model. Our data thereby identify a novel critical window for prevention, using BB-Aß as marker for accumulating Aß in the brain, in the earliest pre-pathological stage, opening new avenues for personalized early preventive strategies against AD, even before amyloid pathology develops.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Animais , Biomarcadores , Estudos Transversais , Humanos , Camundongos , Fragmentos de Peptídeos , Sujeitos da Pesquisa , Proteínas tau
8.
Autophagy ; 18(11): 2697-2710, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35282773

RESUMO

Foamy macrophages containing abundant intracellular myelin remnants are an important pathological hallmark of multiple sclerosis. Reducing the intracellular lipid burden in foamy macrophages is considered a promising therapeutic strategy to induce a phagocyte phenotype that promotes central nervous system repair. Recent research from our group showed that sustained intracellular accumulation of myelin-derived lipids skews these phagocytes toward a disease-promoting and more inflammatory phenotype. Our data now demonstrate that disturbed lipophagy, a selective form of autophagy that helps with the degradation of lipid droplets, contributes to the induction of this phenotype. Stimulating autophagy using the natural disaccharide trehalose reduced the lipid load and inflammatory phenotype of myelin-laden macrophages. Importantly, trehalose was able to boost remyelination in the ex vivo brain slice model and the in vivo cuprizone-induced demyelination model. In summary, our results provide a molecular rationale for impaired metabolism of myelin-derived lipids in macrophages, and identify lipophagy induction as a promising treatment strategy to promote remyelination.Abbreviations: Baf: bafilomycin a1; BMDM: bone marrow-derived macrophage; CD68: CD68 antigen; CNS: central nervous system; LD: lipid droplet; LIPE/HSL: lipase, hormone sensitive; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MBP: myelin basic protein; MGLL: monoglyceride lipase; MS: multiple sclerosis; NO: nitric oxide; NOS2/iNOS: nitric oxide synthase 2, inducible; ORO: oil red o; PNPLA2: patatin-like phospholipase domain containing 2; PLIN2: perilipin 2; TEM: transmission electron microscopy; TFEB: transcription factor EB; TOH: trehalose.


Assuntos
Autofagia , Esclerose Múltipla , Humanos , Autofagia/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Trealose/metabolismo , Macrófagos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
9.
Cell Mol Life Sci ; 79(3): 153, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35217915

RESUMO

Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue's epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF's epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-ß (TGFß) and abrogated by TGFß receptor inhibition, thereby reproducing TGFß's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFß receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.


Assuntos
Saco Dentário/metabolismo , Organoides/metabolismo , Ameloblastos/citologia , Ameloblastos/metabolismo , Diferenciação Celular , Células Cultivadas , Saco Dentário/citologia , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Organoides/citologia , Organoides/patologia , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
10.
Stem Cell Rev Rep ; 17(5): 1619-1634, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33822326

RESUMO

BACKGROUND: Head and neck cancer (HNC) is one of the most common cancers, associated with a huge mortality and morbidity. In order to improve patient outcomes, more efficient and targeted therapies are essential. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) express tumour homing capacity, which could be exploited to target anti-cancer drug delivery to the tumour region and reduce adverse side-effects. Nevertheless, dental pulp stromal cells (DPSCs), an MSC-like population present in teeth, could offer important clinical benefits because of their easy isolation and superior proliferation compared to BM-MSCs. Therefore, we aimed to elucidate the tumour homing and safe usage of DPSCs to treat HNC. METHODS: The in vivo survival as well as the effect of intratumourally administered DPSCs on tumour aggressiveness was tested in a HNC xenograft mouse model by using bioluminescence imaging (BLI), (immuno)histology and qRT-PCR. Furthermore, the in vitro and in vivo tumour homing capacity of DPSCs towards a HNC cell line were evaluated by a transwell migration assay and BLI, respectively. RESULTS: Intratumourally injected DPSCs survived for at least two weeks in the tumour micro-environment and had no significant influence on tumour morphology, growth, angiogenesis and epithelial-to-mesenchymal transition. In addition, DPSCs migrated towards tumour cells in vitro, which could not be confirmed after their in vivo intravenous, intraperitoneal or peritumoural injection under the tested experimental conditions. CONCLUSIONS: Our research suggests that intratumourally delivered DPSCs might be used as safe factories for the continuous delivery of anti-cancer drugs in HNC. Nevertheless, further optimization as well as efficacy studies are necessary to understand and improve in vivo tumour homing and determine the optimal experimental set-up of stem cell-based cancer therapies, including dosing and timing.


Assuntos
Polpa Dentária , Neoplasias de Cabeça e Pescoço , Animais , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Camundongos , Células Estromais , Microambiente Tumoral
11.
Sci Rep ; 11(1): 5687, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707502

RESUMO

Tailored hydrogels mimicking the native extracellular environment could help overcome the high variability in outcomes within regenerative endodontics. This study aimed to evaluate the effect of the chemokine-binding and antimicrobial polymer, chlorite-oxidized oxyamylose (COAM), on the microstructural properties of fibrin and self-assembling peptide (SAP) hydrogels. A further goal was to assess the influence of the microstructural differences between the hydrogels on the in vitro behavior of human dental pulp stem cells (hDPSCs). Structural and mechanical characterization of the hydrogels with and without COAM was performed by atomic force microscopy and scanning electron microscopy to characterize their microstructure (roughness and fiber length, diameter, straightness, and alignment) and by nanoindentation to measure their stiffness (elastic modulus). Then, hDPSCs were encapsulated in hydrogels with and without COAM. Cell viability and circularity were determined using confocal microscopy, and proliferation was determined using DNA quantification. Inclusion of COAM did not alter the microstructure of the fibrin hydrogels at the fiber level while affecting the SAP hydrogel microstructure (homogeneity), leading to fiber aggregation. The stiffness of the SAP hydrogels was sevenfold higher than the fibrin hydrogels. The viability and attachment of hDPSCs were significantly higher in fibrin hydrogels than in SAP hydrogels. The DNA content was significantly affected by the hydrogel type and the presence of COAM. The microstructural stability after COAM inclusion and the favorable hDPSCs' response observed in fibrin hydrogels suggest this system as a promising carrier for COAM and application in endodontic regeneration.


Assuntos
Amilose/análogos & derivados , Cloretos/farmacologia , Polpa Dentária/citologia , Fibrina/química , Hidrogéis/química , Peptídeos/química , Células-Tronco/citologia , Adolescente , Amilose/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/análise , Feminino , Fibrina/ultraestrutura , Humanos , Masculino , Microscopia de Força Atômica , Oxirredução/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Adulto Jovem
12.
Front Public Health ; 9: 584484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692980

RESUMO

Stem cells contained within the dental mesenchymal stromal cell (MSC) population are crucial for tissue homeostasis. Assuring their genomic stability is therefore essential. Exposure of stem cells to ionizing radiation (IR) is potentially detrimental for normal tissue homeostasis. Although it has been established that exposure to high doses of ionizing radiation (IR) has severe adverse effects on MSCs, knowledge about the impact of low doses of IR is lacking. Here we investigated the effect of low doses of X-irradiation with medical imaging beam settings (<0.1 Gray; 900 mGray per hour), in vitro, on pediatric dental mesenchymal stromal cells containing dental pulp stem cells from deciduous teeth, dental follicle progenitor cells and stem cells from the apical papilla. DNA double strand break (DSB) formation and repair kinetics were monitored by immunocytochemistry of γH2AX and 53BP1 as well as cell cycle progression by flow cytometry and cellular senescence by senescence-associated ß-galactosidase assay and ELISA. Increased DNA DSB repair foci, after exposure to low doses of X-rays, were measured as early as 30 min post-irradiation. The number of DSBs returned to baseline levels 24 h after irradiation. Cell cycle analysis revealed marginal effects of IR on cell cycle progression, although a slight G2/M phase arrest was seen in dental pulp stromal cells from deciduous teeth 72 h after irradiation. Despite this cell cycle arrest, no radiation-induced senescence was observed. In conclusion, low X-ray IR doses (< 0.1 Gray; 900 mGray per hour), were able to induce significant increases in the number of DNA DSBs repair foci, but cell cycle progression seems to be minimally affected. This highlights the need for more detailed and extensive studies on the effects of exposure to low IR doses on different mesenchymal stromal cells.


Assuntos
Células-Tronco Mesenquimais , Criança , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Raios X
13.
Front Pharmacol ; 11: 268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231569

RESUMO

BACKGROUND AND PURPOSE: Up to 50-60% of all cancer patients receive radiotherapy as part of their treatment strategy. However, the mechanisms accounting for increased vascular risks after irradiation are not completely understood. Mitochondrial dysfunction has been identified as a potential cause of radiation-induced atherosclerosis. MATERIALS AND METHODS: Assays for apoptosis, cellular metabolism, mitochondrial DNA content, functionality and morphology were used to compare the response of endothelial cells to a single 2 Gy dose of X-rays under basal conditions or after pharmacological treatments that either reduced (EtBr) or increased (rosiglitazone) mitochondrial content. RESULTS: Exposure to ionizing radiation caused a persistent reduction in mitochondrial content of endothelial cells. Pharmacological reduction of mitochondrial DNA content rendered endothelial cells more vulnerable to radiation-induced apoptosis, whereas rosiglitazone treatment increased oxidative metabolism and redox state and decreased the levels of apoptosis after irradiation. CONCLUSION: Pre-existing mitochondrial damage sensitizes endothelial cells to ionizing radiation-induced mitochondrial dysfunction. Rosiglitazone protects endothelial cells from the detrimental effects of radiation exposure on mitochondrial metabolism and oxidative stress. Thus, our findings indicate that rosiglitazone may have potential value as prophylactic for radiation-induced atherosclerosis.

14.
Cells ; 9(4)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326610

RESUMO

Osteoarthritis (OA) is a degenerative and inflammatory joint disorder with cartilage loss. Dental pulp stem cells (DPSCs) can undergo chondrogenic differentiation and secrete growth factors associated with tissue repair and immunomodulation. Leukocyte- and platelet-rich fibrin (L-PRF) emerges in regenerative medicine because of its growth factor content and fibrin matrix. This study evaluates the therapeutic application of DPSCs and L-PRF in OA via immunomodulation and cartilage regeneration. Chondrogenic differentiation of DPSCs, with or without L-PRF exudate (ex) and conditioned medium (CM), and of bone marrow-mesenchymal stem cells was compared. These cells showed differential chondrogenesis. L-PRF was unable to increase cartilage-associated components. Immature murine articular chondrocytes (iMACs) were cultured with L-PRF ex, L-PRF CM, or DPSC CM. L-PRF CM had pro-survival and proliferative effects on unstimulated and cytokine-stimulated iMACs. L-PRF CM stimulated the release of IL-6 and PGE2, and increased MMP-13, TIMP-1 and IL-6 mRNA levels in cytokine-stimulated iMACs. DPSC CM increased the survival and proliferation of unstimulated iMACs. In cytokine-stimulated iMACs, DPSC CM increased TIMP-1 gene expression, whereas it inhibited nitrite release in 3D culture. We showed promising effects of DPSCs in an in vitro OA model, as they undergo chondrogenesis in vitro, stimulate the survival of chondrocytes and have immunomodulatory effects.


Assuntos
Polpa Dentária/citologia , Leucócitos/metabolismo , Osteoartrite/terapia , Fibrina Rica em Plaquetas/metabolismo , Transplante de Células-Tronco , Células-Tronco/citologia , Adolescente , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/ultraestrutura , Condrogênese/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Dinoprostona/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Humanos , Interleucina-1beta/farmacologia , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Nitritos/metabolismo , Osteoartrite/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Adulto Jovem
15.
Tissue Eng Part B Rev ; 26(6): 519-539, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32220219

RESUMO

Tissue engineering aims to structurally and functionally regenerate damaged tissues, which requires the formation of new blood vessels that supply oxygen and nutrients by the process of angiogenesis. Stem cells are a promising tool in regenerative medicine due to their combined differentiation and paracrine angiogenic capacities. The study of their proangiogenic properties and associated potential for tissue regeneration requires complex in vivo models comprising all steps of the angiogenic process. The highly vascularized extraembryonic chorioallantoic membrane (CAM) of fertilized chicken eggs offers a simple, easy accessible, and cheap angiogenic screening tool compared to other animal models. Although the CAM assay was initially primarily performed for evaluation of tumor growth and metastasis, stem cell studies using this model are increasing. In this review, a detailed summary of angiogenic observations of different mesenchymal, cardiac, and endothelial stem cell types and derivatives in the CAM model is presented. Moreover, we focus on the variation in experimental setup, including the benefits and limitations of in ovo and ex ovo protocols, diverse biological and synthetic scaffolds, imaging techniques, and outcome measures of neovascularization. Finally, advantages and disadvantages of the CAM assay as a model for angiogenesis in tissue engineering in comparison with alternative in vivo animal models are described. Impact statement The chorioallantoic membrane (CAM) assay is an easy and cheap screening tool for the angiogenic properties of stem cells and their associated potential in the tissue engineering field. This review offers an overview of all published angiogenic studies of stem cells using this model, with emphasis on the variation in used experimental timeline, culture protocol (in ovo vs. ex ovo), stem cell type (derivatives), scaffolds, and outcome measures of vascularization. The purpose of this overview is to aid tissue engineering researchers to determine the ideal CAM experimental setup based on their specific study goals.


Assuntos
Membrana Corioalantoide , Engenharia Tecidual , Animais , Bioensaio , Neovascularização Fisiológica , Células-Tronco
16.
Proc Natl Acad Sci U S A ; 117(9): 5028-5038, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071226

RESUMO

The brain's endogenous capacity to restore damaged myelin deteriorates during the course of demyelinating disorders. Currently, no treatment options are available to establish remyelination. Chronic demyelination leads to damaged axons and irreversible destruction of the central nervous system (CNS). We identified two promising therapeutic candidates which enhance remyelination: oncostatin M (OSM), a member of the interleukin-6 family, and downstream mediator tissue inhibitor of metalloproteinases-1 (TIMP-1). While remyelination was completely abrogated in OSMRß knockout (KO) mice, OSM overexpression in the chronically demyelinated CNS established remyelination. Astrocytic TIMP-1 was demonstrated to play a pivotal role in OSM-mediated remyelination. Astrocyte-derived TIMP-1 drove differentiation of oligodendrocyte precursor cells into mature oligodendrocytes in vitro. In vivo, TIMP-1 deficiency completely abolished spontaneous remyelination, phenocopying OSMRß KO mice. Finally, TIMP-1 was expressed by human astrocytes in demyelinated multiple sclerosis lesions, confirming the human value of our findings. Taken together, OSM and its downstream mediator TIMP-1 have the therapeutic potential to boost remyelination in demyelinating disorders.


Assuntos
Astrócitos/metabolismo , Oncostatina M/metabolismo , Remielinização/fisiologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Astrócitos/patologia , Axônios , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina , Células Precursoras de Oligodendrócitos , Inibidor Tecidual de Metaloproteinase-1/genética
17.
Cells ; 9(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012900

RESUMO

Blood vessel formation or angiogenesis is a key process for successful tooth regeneration. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) possess paracrine proangiogenic properties, which are, at least partially, induced by their extracellular vesicles (EVs). However, the isolation of BM-MSCs is associated with several drawbacks, which could be overcome by MSC-like cells of the teeth, called dental pulp stromal cells (DPSCs). This study aims to compare the angiogenic content and functions of DPSC and BM-MSC EVs and conditioned medium (CM). The angiogenic protein profile of DPSC- and BM-MSC-derived EVs, CM and EV-depleted CM was screened by an antibody array and confirmed by ELISA. Functional angiogenic effects were tested in transwell migration and chicken chorioallantoic membrane assays. All secretion fractions contained several pro- and anti-angiogenic proteins and induced in vitro endothelial cell motility. This chemotactic potential was higher for (EV-depleted) CM, compared to EVs with a stronger effect for BM-MSCs. Finally, BM-MSC CM, but not DPSC CM, nor EVs, increased in ovo angiogenesis. In conclusion, we showed that DPSCs are less potent in relation to endothelial cell chemotaxis and in ovo neovascularization, compared to BM-MSCs, which emphasizes the importance of choice of cell type and secretion fraction for stem cell-based regenerative therapies in inducing angiogenesis.


Assuntos
Polpa Dentária/citologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Adolescente , Indutores da Angiogênese/metabolismo , Animais , Fatores Quimiotáticos/farmacologia , Galinhas , Endocitose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Neovascularização Fisiológica/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Fatores de Tempo , Adulto Jovem
18.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097464

RESUMO

Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Macrophages and microglia are crucially involved in the formation and repair of demyelinated lesions. Here we show that myelin uptake temporarily skewed these phagocytes toward a disease-resolving phenotype, while sustained intracellular accumulation of myelin induced a lesion-promoting phenotype. This phenotypic shift was controlled by stearoyl-CoA desaturase-1 (SCD1), an enzyme responsible for the desaturation of saturated fatty acids. Monounsaturated fatty acids generated by SCD1 reduced the surface abundance of the cholesterol efflux transporter ABCA1, which in turn promoted lipid accumulation and induced an inflammatory phagocyte phenotype. Pharmacological inhibition or phagocyte-specific deficiency of Scd1 accelerated remyelination ex vivo and in vivo. These findings identify SCD1 as a novel therapeutic target to promote remyelination.


Assuntos
Encéfalo/patologia , Macrófagos/enzimologia , Microglia/enzimologia , Estearoil-CoA Dessaturase/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Endocitose , Ácidos Graxos/metabolismo , Células Espumosas/metabolismo , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Microglia/metabolismo , Bainha de Mielina/metabolismo , Fagócitos/patologia , Fagócitos/ultraestrutura , Fenótipo , Proteína Quinase C-delta/metabolismo , Estearoil-CoA Dessaturase/deficiência
19.
Arch Toxicol ; 94(1): 173-186, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677074

RESUMO

Macrophages play a major role in the removal of foreign materials, including nano-sized materials, such as nanomedicines and other nanoparticles, which they accumulate very efficiently. Because of this, it is recognized that for a safe development of nanotechnologies and nanomedicine, it is essential to investigate potential effects induced by nano-sized materials on macrophages. To this aim, in this work, a recently established model of primary murine alveolar-like macrophages was used to investigate macrophage responses to two well-known nanoparticle models: 50 nm amino-modified polystyrene, known to induce cell death via lysosomal damage and apoptosis in different cell types, and 50 nm silica nanoparticles, which are generally considered non-toxic. Then, a time-resolved study was performed to characterize in detail the response of the macrophages following exposure to the two nanoparticles. As expected, exposure to the amino-modified polystyrene led to cell death, but surprisingly no lysosomal swelling or apoptosis were detected. On the contrary, a peculiar mitochondrial membrane hyperpolarization was observed, accompanied by endoplasmic reticulum stress (ER stress), increased cellular reactive oxygen species (ROS) and changes of metabolic activity, ultimately leading to cell death. Strong toxic responses were observed also after exposure to silica, which included mitochondrial ROS production, mitochondrial depolarization and cell death by apoptosis. Overall, these results showed that exposure to the two nanoparticles led to a very different series of intracellular events, suggesting that the macrophages responded differently to the two nanoparticle models. Similar time-resolved studies are required to characterize the response of macrophages to nanoparticles, as a key parameter in nanosafety assessment.


Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Poliestirenos/toxicidade , Dióxido de Silício/toxicidade , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Cultivadas , Difusão Dinâmica da Luz , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos Alveolares/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Poliestirenos/química , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
20.
J Cardiovasc Transl Res ; 13(5): 769-782, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31848881

RESUMO

In this study, the effects of moderate intense endurance exercise on heart and kidney function and morphology were studied in a thoracic inferior vena cava constricted (IVCc) rat model of abdominal venous congestion. After IVC surgical constriction, eight sedentary male Sprague-Dawley IVCc rats (IVCc-SED) were compared to eight IVCc rats subjected to moderate intense endurance exercise (IVCc-MOD). Heart and kidney function was examined and renal functional reserve (RFR) was investigated by administering a high protein diet (HPD). After 12 weeks of exercise training, abdominal venous pressure, indices of body fat content, plasma cystatin C levels, and post-HPD urinary KIM-1 levels were all significantly lower in IVCc-MOD versus IVCc-SED rats (P < 0.05). RFR did not differ between both groups. The implementation of moderate intense endurance exercise in the IVCc model reduces abdominal venous pressure and is beneficial to kidney function.


Assuntos
Terapia por Exercício , Hiperemia/terapia , Rim/fisiopatologia , Resistência Física , Animais , Biomarcadores/sangue , Biomarcadores/urina , Moléculas de Adesão Celular/urina , Cistatina C/sangue , Modelos Animais de Doenças , Hiperemia/metabolismo , Hiperemia/fisiopatologia , Rim/metabolismo , Ligadura , Masculino , Projetos Piloto , Ratos Sprague-Dawley , Veia Cava Inferior/fisiopatologia , Veia Cava Inferior/cirurgia , Pressão Venosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA