Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Lancet Oncol ; 24(12): 1411-1422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951222

RESUMO

BACKGROUND: Clinical benefits of atezolizumab plus bevacizumab (atezolizumab-bevacizumab) are observed only in a subset of patients with hepatocellular carcinoma and the development of biomarkers is needed to improve therapeutic strategies. The atezolizumab-bevacizumab response signature (ABRS), assessed by molecular biology profiling techniques, has been shown to be associated with progression-free survival after treatment initiation. The primary objective of our study was to develop an artificial intelligence (AI) model able to estimate ABRS expression directly from histological slides, and to evaluate if model predictions were associated with progression-free survival. METHODS: In this multicentre retrospective study, we developed a model (ABRS-prediction; ABRS-P), which was derived from the previously published clustering-constrained attention multiple instance learning (or CLAM) pipeline. We trained the model fit for regression analysis using a multicentre dataset from The Cancer Genome Atlas (patients treated by surgical resection, n=336). The ABRS-P model was externally validated on two independent series of samples from patients with hepatocellular carcinoma (a surgical resection series, n=225; and a biopsy series, n=157). The predictive value of the model was further tested in a series of biopsy samples from a multicentre cohort of patients with hepatocellular carcinoma treated with atezolizumab-bevacizumab (n=122). All samples in the study were from adults (aged ≥18 years). The validation sets were sampled between Jan 1, 2008, to Jan 1, 2023. For the multicentre validation set, the primary objective was to assess the association of high versus low ABRS-P values, defined relative to cross-validation median split thresholds in the first biopsy series, with progression-free survival after treatment initiation. Finally, we performed spatial transcriptomics and matched prediction heatmaps with in situ expression profiles. FINDINGS: Of the 840 patients sampled, 641 (76%) were male and 199 (24%) were female. Across the development and validation datasets, hepatocellular carcinoma risk factors included alcohol intake, hepatitis B and C virus infections, and non-alcoholic steatohepatitis. Using cross-validation in the development series, the mean Pearson's correlation between ABRS-P values and ABRS score (mean expression of ABRS genes) was r=0·62 (SD 0·09; mean p<0·0001, SD<0·0001). The ABRS-P generalised well on the external validation series (surgical resection series, r=0·60 [95% CI 0·51-0·68], p<0·0001; biopsy series, r=0·53 [0·40-0·63], p<0·0001). In the 122 patients treated with atezolizumab-bevacizumab, those with ABRS-P-high tumours (n=74) showed significantly longer median progression-free survival than those with ABRS-P-low tumours (n=48) after treatment initiation (12 months [95% CI 7-not reached] vs 7 months [4-9]; p=0·014). Spatial transcriptomics showed significantly higher ABRS score, along with upregulation of various other immune effectors, in tumour areas with high ABRS-P values versus areas with low ABRS-P values. INTERPRETATION: Our study indicates that AI applied on hepatocellular carcinoma digital slides is able to serve as a biomarker for progression-free survival in patients treated with atezolizumab-bevacizumab. This approach could be used in the development of inexpensive and fast biomarkers for targeted therapies. The combination of AI heatmaps with spatial transcriptomics provides insight on the molecular features associated with predictions. This methodology could be applied to other cancers or diseases and improve understanding of the biological mechanisms that drive responses to treatments. FUNDING: Institut National du Cancer, Fondation ARC, China Scholarship Council, Ligue Contre le Cancer du Val de Marne, Fondation de l'Avenir, Ipsen, and Fondation Bristol Myers Squibb Pour la Recherche en Immuno-Oncologie.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adolescente , Adulto , Feminino , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inteligência Artificial , Bevacizumab/uso terapêutico , Biomarcadores , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Estudos Retrospectivos
2.
Nat Cell Biol ; 25(12): 1736-1745, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036749

RESUMO

Myeloid cell infiltration of solid tumours generally associates with poor patient prognosis and disease severity1-13. Therefore, understanding the regulation of myeloid cell differentiation during cancer is crucial to counteract their pro-tumourigenic role. Bone marrow (BM) haematopoiesis is a tightly regulated process for the production of all immune cells in accordance to tissue needs14. Myeloid cells differentiate during haematopoiesis from multipotent haematopoietic stem and progenitor cells (HSPCs)15-17. HSPCs can sense inflammatory signals from the periphery during infections18-21 or inflammatory disorders22-27. In these settings, HSPC expansion is associated with increased myeloid differentiation28,29. During carcinogenesis, the elevation of haematopoietic growth factors supports the expansion and differentiation of committed myeloid progenitors5,30. However, it is unclear whether cancer-related inflammation also triggers demand-adapted haematopoiesis at the level of multipotent HSPCs. In the BM, HSPCs reside within the haematopoietic niche which delivers HSC maintenance and differentiation cues31-35. Mesenchymal stem cells (MSCs) are a major cellular component of the BM niche and contribute to HSC homeostasis36-41. Modifications of MSCs in systemic disorders have been associated with HSC differentiation towards myeloid cells22,42. It is unknown if MSCs are regulated in the context of solid tumours and if their myeloid supportive activity is impacted by cancer-induced systemic changes. Here, using unbiased transcriptomic analysis and in situ imaging of HSCs and the BM niche during breast cancer, we show that both HSCs and MSCs are transcriptionally and spatially modified. We demonstrate that breast tumour can distantly remodel the cellular cross-talks in the BM niche leading to increased myelopoiesis.


Assuntos
Medula Óssea , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Multipotentes/metabolismo , Diferenciação Celular , Nicho de Células-Tronco , Células da Medula Óssea
3.
Nat Commun ; 14(1): 2445, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117166

RESUMO

Radiation Induced Lung Injury (RILI) is one of the main limiting factors of thorax irradiation, which can induce acute pneumonitis as well as pulmonary fibrosis, the latter being a life-threatening condition. The order of cellular and molecular events in the progression towards fibrosis is key to the physiopathogenesis of the disease, yet their coordination in space and time remains largely unexplored. Here, we present an interactive murine single cell atlas of the lung response to irradiation, generated from C57BL6/J female mice. This tool opens the door for exploration of the spatio-temporal dynamics of the mechanisms that lead to radiation-induced pulmonary fibrosis. It depicts with unprecedented detail cell type-specific radiation-induced responses associated with either lung regeneration or the failure thereof. A better understanding of the mechanisms leading to lung fibrosis will help finding new therapeutic options that could improve patients' quality of life.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Lesões por Radiação , Pneumonite por Radiação , Feminino , Animais , Camundongos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/patologia , Qualidade de Vida , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Tórax
5.
Stud Health Technol Inform ; 294: 834-838, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612221

RESUMO

INTRODUCTION: The implication of viruses in human cancers, as well as the emergence of next generation sequencing has permitted to investigate further their role and pathophysiology in the development of this disease. One such mechanism is the integration of portions of viral genomes in the human genome, as well as the specific action of viral oncogenes.inding integration sites and preserved oncogenes is still relying on heavy manual intervention. METHODS: We developed an analysis and interpretation pipeline to determine viral insertions. Using data from directed viral capture, the pipeline conducts a crude genotyping phase to select reference viral genomes, identifies chimeric reads, extracts the putative human sequences to locate in the human reference genome, scores and ranks candidate junctions, and exports tabular and visual results. RESULTS: We leverage common bioinformatics tools (bowtie2, samtools, blat), and a dedicated filtering and ranking algorithm, implemented in R, to infer candidate junctions and insertions. Static results (tables, figures) are produced, as well as an interactive interpretation tool developed as a shiny web app. DISCUSSION: We validated this pipeline against published results of HPV, HBV, and AAV2 insertions and show good information retrieval.


Assuntos
Biologia Computacional , Vírus , Algoritmos , Biologia Computacional/métodos , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
6.
Mol Oncol ; 16(16): 3001-3016, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35398964

RESUMO

A prevalence of around 26% of human papillomavirus (HPV) in head and neck squamous cell carcinoma (HNSCC) has been previously reported. HPV induced oncogenesis mainly involving E6 and E7 viral oncoproteins. In some cases, HPV viral DNA has been detected to integrate with the host genome and possibly contributes to carcinogenesis by affecting the gene expression. We retrospectively assessed HPV integration sites and signatures in 80 HPV positive patients with HNSCC, by using a double capture-HPV method followed by next-generation Sequencing. We detected HPV16 in 90% of the analyzed cohort and confirmed five previously described mechanistic signatures of HPV integration [episomal (EPI), integrated in a truncated form revealing two HPV-chromosomal junctions colinear (2J-COL) or nonlinear (2J-NL), multiple hybrid junctions clustering in a single chromosomal region (MJ-CL) or scattered over different chromosomal regions (MJ-SC) of the human genome]. Our results suggested that HPV remained episomal in 38.8% of the cases or was integrated/mixed in the remaining 61.2% of patients with HNSCC. We showed a lack of association of HPV genomic signatures to tumour and patient characteristics, as well as patient survival. Similar to other HPV associated cancers, low HPV copy number was associated with worse prognosis. We identified 267 HPV-human junctions scattered on most chromosomes. Remarkably, we observed four recurrent integration regions: PDL1/PDL2/PLGRKT (8.2%), MYC/PVT1 (6.1%), MACROD2 (4.1%) and KLF5/KLF12 regions (4.1%). We detected the overexpression of PDL1 and MYC upon integration by gene expression analysis. In conclusion, we identified recurrent targeting of several cancer genes such as PDL1 and MYC upon HPV integration, suggesting a role of altered gene expression by HPV integration during HNSCC carcinogenesis.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Carcinogênese , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , DNA , Genômica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Fatores de Transcrição Kruppel-Like , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
7.
Cell ; 185(7): 1189-1207.e25, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35325594

RESUMO

Macrophage infiltration is a hallmark of solid cancers, and overall macrophage infiltration correlates with lower patient survival and resistance to therapy. Tumor-associated macrophages, however, are phenotypically and functionally heterogeneous. Specific subsets of tumor-associated macrophage might be endowed with distinct roles on cancer progression and antitumor immunity. Here, we identify a discrete population of FOLR2+ tissue-resident macrophages in healthy mammary gland and breast cancer primary tumors. FOLR2+ macrophages localize in perivascular areas in the tumor stroma, where they interact with CD8+ T cells. FOLR2+ macrophages efficiently prime effector CD8+ T cells ex vivo. The density of FOLR2+ macrophages in tumors positively correlates with better patient survival. This study highlights specific roles for tumor-associated macrophage subsets and paves the way for subset-targeted therapeutic interventions in macrophages-based cancer therapies.


Assuntos
Neoplasias da Mama , Macrófagos , Mama/imunologia , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos , Feminino , Receptor 2 de Folato , Humanos , Linfócitos do Interstício Tumoral , Prognóstico
8.
Sci Rep ; 11(1): 4633, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633240

RESUMO

Archival tissue samples collected longitudinally from a patient who died from HPV16-induced high-grade anal intraepithelial squamous cell carcinoma with vertebral HPV16-positive metastasis were retrospectively analyzed by the Capture-HPV method (Capt-HPV) followed by Next-Generation Sequencing (NGS). Full length nucleotide sequences of the same HPV16 were identified from the initial and second anal biopsy samples, from plasma sample and from vertebral metastasis biopsy. Remarkably, HPV was episomal in each sample. The HPV genome sequence was closest to the HPV16 Qv18158E variant subtype (A1 lineage) exhibiting base substitutions and deletions in 7 and 2 HPV loci, respectively. In conclusion, the powerful Capt-HPV followed by NGS allows evidencing the detailed cartography of tumoral and circulating HPV DNA, giving rise to a unique and unexpected episomal virus molecular status in a context of aggressive carcinoma, underlying the importance of HPV status and its association with clinical features for further prospective studies.


Assuntos
Neoplasias do Ânus/complicações , Carcinoma de Células Escamosas/complicações , Papillomavirus Humano 16/isolamento & purificação , Metástase Neoplásica , Infecções por Papillomavirus/complicações , Neoplasias do Ânus/sangue , Neoplasias do Ânus/patologia , Neoplasias do Ânus/virologia , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Humanos , Estudos Retrospectivos
9.
EMBO J ; 40(9): e106388, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33634906

RESUMO

Transposable elements (TEs) play a significant role in evolution, contributing to genetic variation. However, TE mobilization in somatic cells is not well understood. Here, we address the prevalence of transposition in a somatic tissue, exploiting the Drosophila midgut as a model. Using whole-genome sequencing of in vivo clonally expanded gut tissue, we have mapped hundreds of high-confidence somatic TE integration sites genome-wide. We show that somatic retrotransposon insertions are associated with inactivation of the tumor suppressor Notch, likely contributing to neoplasia formation. Moreover, applying Oxford Nanopore long-read sequencing technology we provide evidence for tissue-specific differences in retrotransposition. Comparing somatic TE insertional activity with transcriptomic and small RNA sequencing data, we demonstrate that transposon mobility cannot be simply predicted by whole tissue TE expression levels or by small RNA pathway activity. Finally, we reveal that somatic TE insertions in the adult fly intestine are enriched in genic regions and in transcriptionally active chromatin. Together, our findings provide clear evidence of ongoing somatic transposition in Drosophila and delineate previously unknown features underlying somatic TE mobility in vivo.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neoplasias Intestinais/genética , Receptores Notch/genética , Animais , Evolução Clonal , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Masculino , Especificidade de Órgãos , Recombinação Genética , Análise de Sequência de RNA/métodos , Sequenciamento Completo do Genoma
10.
Nature ; 591(7849): 312-316, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442060

RESUMO

Endogenous retroviruses (ERVs) are abundant and heterogenous groups of integrated retroviral sequences that affect genome regulation and cell physiology throughout their RNA-centred life cycle1. Failure to repress ERVs is associated with cancer, infertility, senescence and neurodegenerative diseases2,3. Here, using an unbiased genome-scale CRISPR knockout screen in mouse embryonic stem cells, we identify m6A RNA methylation as a way to restrict ERVs. Methylation of ERV mRNAs is catalysed by the complex of methyltransferase-like METTL3-METTL144 proteins, and we found that depletion of METTL3-METTL14, along with their accessory subunits WTAP and ZC3H13, led to increased mRNA abundance of intracisternal A-particles (IAPs) and related ERVK elements specifically, by targeting their 5' untranslated region. Using controlled auxin-dependent degradation of the METTL3-METTL14 enzymatic complex, we showed that IAP mRNA and protein abundance is dynamically and inversely correlated with m6A catalysis. By monitoring chromatin states and mRNA stability upon METTL3-METTL14 double depletion, we found that m6A methylation mainly acts by reducing the half-life of IAP mRNA, and this occurs by the recruitment of the YTHDF family of m6A reader proteins5. Together, our results indicate that RNA methylation provides a protective effect in maintaining cellular integrity by clearing reactive ERV-derived RNA species, which may be especially important when transcriptional silencing is less stringent.


Assuntos
Retrovirus Endógenos/genética , Genes de Partícula A Intracisternal/genética , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Técnicas de Inativação de Genes , Meia-Vida , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas , Proteínas Nucleares/metabolismo , Fatores de Processamento de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/química , Proteínas de Ligação a RNA/metabolismo
11.
Sci Immunol ; 6(55)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514641

RESUMO

Tumor-infiltrating lymphocytes (TILs), in general, and especially CD8+ TILs, represent a favorable prognostic factor in non-small cell lung cancer (NSCLC). The tissue origin, regenerative capacities, and differentiation pathways of TIL subpopulations remain poorly understood. Using a combination of single-cell RNA and T cell receptor (TCR) sequencing, we investigate the functional organization of TIL populations in primary NSCLC. We identify two CD8+ TIL subpopulations expressing memory-like gene modules: one is also present in blood (circulating precursors) and the other one in juxtatumor tissue (tissue-resident precursors). In tumors, these two precursor populations converge through a unique transitional state into terminally differentiated cells, often referred to as dysfunctional or exhausted. Differentiation is associated with TCR expansion, and transition from precursor to late-differentiated states correlates with intratumor T cell cycling. These results provide a coherent working model for TIL origin, ontogeny, and functional organization in primary NSCLC.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Diferenciação Celular/imunologia , Feminino , Humanos , Pulmão/imunologia , Pulmão/patologia , Pulmão/cirurgia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Pneumonectomia , Microambiente Tumoral/imunologia
12.
Br J Cancer ; 124(4): 777-785, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191407

RESUMO

BACKGROUND: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality with infection by human papilloma virus (HPV) being the most important risk factor. We analysed the association between different viral integration signatures, clinical parameters and outcome in pre-treated CCs. METHODS: Different integration signatures were identified using HPV double capture followed by next-generation sequencing (NGS) in 272 CC patients from the BioRAIDs study [NCT02428842]. Correlations between HPV integration signatures and clinical, biological and molecular features were assessed. RESULTS: Episomal HPV was much less frequent in CC as compared to anal carcinoma (p < 0.0001). We identified >300 different HPV-chromosomal junctions (inter- or intra-genic). The most frequent integration site in CC was in MACROD2 gene followed by MIPOL1/TTC6 and TP63. HPV integration signatures were not associated with histological subtype, FIGO staging, treatment or PFS. HPVs were more frequently episomal in PIK3CA mutated tumours (p = 0.023). Viral integration type was dependent on HPV genotype (p < 0.0001); HPV18 and HPV45 being always integrated. High HPV copy number was associated with longer PFS (p = 0.011). CONCLUSIONS: This is to our knowledge the first study assessing the prognostic value of HPV integration in a prospectively annotated CC cohort, which detects a hotspot of HPV integration at MACROD2; involved in impaired PARP1 activity and chromosome instability.


Assuntos
Enzimas Reparadoras do DNA/genética , Hidrolases/genética , Papillomaviridae/fisiologia , Infecções por Papillomavirus/virologia , Neoplasias do Colo do Útero/virologia , Integração Viral/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/virologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Humanos , Calicreínas/genética , Pessoa de Meia-Idade , Papillomaviridae/genética , Infecções por Papillomavirus/genética , Intervalo Livre de Progressão , Antígeno Prostático Específico/genética , Neoplasias do Colo do Útero/genética
13.
Cell ; 183(2): 411-428.e16, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32970988

RESUMO

The colon is primarily responsible for absorbing fluids. It contains a large number of microorganisms including fungi, which are enriched in its distal segment. The colonic mucosa must therefore tightly regulate fluid influx to control absorption of fungal metabolites, which can be toxic to epithelial cells and lead to barrier dysfunction. How this is achieved remains unknown. Here, we describe a mechanism by which the innate immune system allows rapid quality check of absorbed fluids to avoid intoxication of colonocytes. This mechanism relies on a population of distal colon macrophages that are equipped with "balloon-like" protrusions (BLPs) inserted in the epithelium, which sample absorbed fluids. In the absence of macrophages or BLPs, epithelial cells keep absorbing fluids containing fungal products, leading to their death and subsequent loss of epithelial barrier integrity. These results reveal an unexpected and essential role of macrophages in the maintenance of colon-microbiota interactions in homeostasis. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Animais , Colo/metabolismo , Células Epiteliais/metabolismo , Epitélio , Feminino , Homeostase , Imunidade Inata/imunologia , Mucosa Intestinal/microbiologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Transdução de Sinais
14.
Cancer Discov ; 10(9): 1330-1351, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434947

RESUMO

A subset of cancer-associated fibroblasts (FAP+/CAF-S1) mediates immunosuppression in breast cancers, but its heterogeneity and its impact on immunotherapy response remain unknown. Here, we identify 8 CAF-S1 clusters by analyzing more than 19,000 single CAF-S1 fibroblasts from breast cancer. We validate the five most abundant clusters by flow cytometry and in silico analyses in other cancer types, highlighting their relevance. Myofibroblasts from clusters 0 and 3, characterized by extracellular matrix proteins and TGFß signaling, respectively, are indicative of primary resistance to immunotherapies. Cluster 0/ecm-myCAF upregulates PD-1 and CTLA4 protein levels in regulatory T lymphocytes (Tregs), which, in turn, increases CAF-S1 cluster 3/TGFß-myCAF cellular content. Thus, our study highlights a positive feedback loop between specific CAF-S1 clusters and Tregs and uncovers their role in immunotherapy resistance. SIGNIFICANCE: Our work provides a significant advance in characterizing and understanding FAP+ CAF in cancer. We reached a high resolution at single-cell level, which enabled us to identify specific clusters associated with immunosuppression and immunotherapy resistance. Identification of cluster-specific signatures paves the way for therapeutic options in combination with immunotherapies.This article is highlighted in the In This Issue feature, p. 1241.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Evasão Tumoral , Microambiente Tumoral/imunologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/cirurgia , Cultura Primária de Células , RNA-Seq , Análise de Célula Única , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
15.
Cancers (Basel) ; 11(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766658

RESUMO

The role of human papillomavirus (HPV) in anal squamous cell carcinoma (ASCC) carcinogenesis has been clearly established, involving the expression of viral oncoproteins and optional viral DNA integration into the host genome. In this article, we describe the various mechanisms and sites of HPV DNA insertion and assess their prognostic and predictive value in a large series of patients with HPV-positive ASCC with long-term follow-up. We retrospectively analyzed 96 tumor samples from 93 HPV-positive ASCC patients using the Capture-HPV method followed by Next-Generation Sequencing, allowing determination of HPV genotype and identification of the mechanisms and sites of viral genome integration. We identified five different mechanistic signatures of HPV insertions. The distribution of HPV signatures differed from that previously described in HPV-positive cervical carcinoma (p < 0.001). In ASCC samples, the HPV genome more frequently remained in episomal form (45.2%). The most common signature of HPV insertion was MJ-SC (26.9%), i.e., HPV-chromosomal junctions scattered at different loci. Functionally, HPV integration signatures were not associated with survival or response to treatment, but were associated with viral load (p = 0.022) and PIK3CA mutation (p = 0.0069). High viral load was associated with longer survival in both univariate (p = 0.044) and multivariate (p = 0.011) analyses. Finally, HPV integration occurred on most human chromosomes, but intragenic integration into the NFIX gene was recurrently observed (n = 4/51 tumors). Overall, the distribution of mechanistic signatures of HPV insertions in ASCC was different from that observed in cervical carcinoma and was associated with viral load and PIK3CA mutation. We confirmed recurrent targeting of NFIX by HPV integration, suggesting a role for this gene in ASCC carcinogenesis.

16.
Cancer Cell ; 36(6): 597-612.e8, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31708437

RESUMO

Rhabdoid tumors (RTs) are genomically simple pediatric cancers driven by the biallelic inactivation of SMARCB1, leading to SWI/SNF chromatin remodeler complex deficiency. Comprehensive evaluation of the immune infiltrates of human and mice RTs, including immunohistochemistry, bulk RNA sequencing and DNA methylation profiling studies showed a high rate of tumors infiltrated by T and myeloid cells. Single-cell RNA (scRNA) and T cell receptor sequencing highlighted the heterogeneity of these cells and revealed therapeutically targetable exhausted effector and clonally expanded tissue resident memory CD8+ T subpopulations, likely representing tumor-specific cells. Checkpoint blockade therapy in an experimental RT model induced the regression of established tumors and durable immune responses. Finally, we show that one mechanism mediating RTs immunogenicity involves SMARCB1-dependent re-expression of endogenous retroviruses and interferon-signaling activation.


Assuntos
Montagem e Desmontagem da Cromatina/imunologia , Tumor Rabdoide/genética , Tumor Rabdoide/imunologia , Linfócitos T/imunologia , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Humanos , Imuno-Histoquímica/métodos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
17.
Nat Genet ; 51(6): 1060-1066, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31152164

RESUMO

Modulation of chromatin structure via histone modification is a major epigenetic mechanism and regulator of gene expression. However, the contribution of chromatin features to tumor heterogeneity and evolution remains unknown. Here we describe a high-throughput droplet microfluidics platform to profile chromatin landscapes of thousands of cells at single-cell resolution. Using patient-derived xenograft models of acquired resistance to chemotherapy and targeted therapy in breast cancer, we found that a subset of cells within untreated drug-sensitive tumors share a common chromatin signature with resistant cells, undetectable using bulk approaches. These cells, and cells from the resistant tumors, have lost chromatin marks-H3K27me3, which is associated with stable transcriptional repression-for genes known to promote resistance to treatment. This single-cell chromatin immunoprecipitation followed by sequencing approach paves the way to study the role of chromatin heterogeneity, not just in cancer but in other diseases and healthy systems, notably during cellular differentiation and development.


Assuntos
Neoplasias da Mama/genética , Imunoprecipitação da Cromatina , Cromatina/genética , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Célula Única , Cromatina/metabolismo , Biologia Computacional/métodos , Epigênese Genética , Feminino , Histonas/metabolismo , Humanos , Técnicas Analíticas Microfluídicas , Análise de Célula Única/métodos , Células Estromais , Fluxo de Trabalho
18.
J Exp Med ; 216(7): 1561-1581, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31072818

RESUMO

CD4+ T follicular helper (Tfh) cells are essential for inducing efficient humoral responses. T helper polarization is classically orientated by dendritic cells (DCs), which are composed of several subpopulations with distinct functions. Whether human DC subsets display functional specialization for Tfh polarization remains unclear. Here we find that tonsil cDC2 and CD14+ macrophages are the best inducers of Tfh polarization. This ability is intrinsic to the cDC2 lineage but tissue dependent for macrophages. We further show that human Tfh cells comprise two effector states producing either IL-21 or CXCL13. Distinct mechanisms drive the production of Tfh effector molecules, involving IL-12p70 for IL-21 and activin A and TGFß for CXCL13. Finally, using imaging mass cytometry, we find that tonsil CD14+ macrophages localize in situ in the B cell follicles, where they can interact with Tfh cells. Our results indicate that human lymphoid organ cDC2 and macrophages play complementary roles in the induction of Tfh responses.


Assuntos
Tecido Linfoide/imunologia , Macrófagos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Polaridade Celular , Quimiocina CXCL13/metabolismo , Células Dendríticas , Humanos , Interleucinas/metabolismo , Receptores de Lipopolissacarídeos/imunologia , Tecido Linfoide/citologia , Subpopulações de Linfócitos T
20.
BMC Genomics ; 17(1): 851, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27806689

RESUMO

BACKGROUND: Human papillomaviruses (HPVs) are a worldwide burden as they are a widespread group of tumour viruses in humans. Having a tropism for mucosal tissues, high-risk HPVs are detected in nearly all cervical cancers. HPV16 is the most common high-risk type but not all women infected with high-risk HPV develop a malignant tumour. Likely relevant, HPV genomes are polymorphic and some HPV16 single nucleotide polymorphisms (SNPs) are under evolutionary constraint instigating variable oncogenicity and immunogenicity in the infected host. RESULTS: To investigate the tumourigenicity of two common HPV16 variants, we used our recently developed, three-dimensional organotypic model reminiscent of the natural HPV infectious cycle and conducted various "omics" and bioinformatics approaches. Based on epidemiological studies we chose to examine the HPV16 Asian-American (AA) and HPV16 European Prototype (EP) variants. They differ by three non-synonymous SNPs in the transforming and virus-encoded E6 oncogene where AAE6 is classified as a high- and EPE6 as a low-risk variant. Remarkably, the high-risk AAE6 variant genome integrated into the host DNA, while the low-risk EPE6 variant genome remained episomal as evidenced by highly sensitive Capt-HPV sequencing. RNA-seq experiments showed that the truncated form of AAE6, integrated in chromosome 5q32, produced a local gene over-expression and a large variety of viral-human fusion transcripts, including long distance spliced transcripts. In addition, differential enrichment of host cell pathways was observed between both HPV16 E6 variant-containing epithelia. Finally, in the high-risk variant, we detected a molecular signature of host chromosomal instability, a common property of cancer cells. CONCLUSIONS: We show how naturally occurring SNPs in the HPV16 E6 oncogene cause significant changes in the outcome of HPV infections and subsequent viral and host transcriptome alterations prone to drive carcinogenesis. Host genome instability is closely linked to viral integration into the host genome of HPV-infected cells, which is a key phenomenon for malignant cellular transformation and the reason for uncontrolled E6 oncogene expression. In particular, the finding of variant-specific integration potential represents a new paradigm in HPV variant biology.


Assuntos
Interações Hospedeiro-Patógeno/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/fisiologia , Neoplasias/epidemiologia , Neoplasias/virologia , Polimorfismo de Nucleotídeo Único , Transcrição Gênica , Instabilidade Cromossômica , Humanos , Neoplasias/genética , Fenótipo , Especificidade da Espécie , Integração Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA