Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1168607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153579

RESUMO

Introduction: Osteopenia has been associated to several inflammatory conditions, including mycobacterial infections. How mycobacteria cause bone loss remains elusive, but direct bone infection may not be required. Methods: Genetically engineered mice and morphometric, transcriptomic, and functional analyses were used. Additionally, inflammatory mediators and bone turnover markers were measured in the serum of healthy controls, individuals with latent tuberculosis and patients with active tuberculosis. Results and discussion: We found that infection with Mycobacterium avium impacts bone turnover by decreasing bone formation and increasing bone resorption, in an IFNγ- and TNFα-dependent manner. IFNγ produced during infection enhanced macrophage TNFα secretion, which in turn increased the production of serum amyloid A (SAA) 3. Saa3 expression was upregulated in the bone of both M. avium- and M. tuberculosis-infected mice and SAA1 and 2 proteins (that share a high homology with murine SAA3 protein) were increased in the serum of patients with active tuberculosis. Furthermore, the increased SAA levels seen in active tuberculosis patients correlated with altered serum bone turnover markers. Additionally, human SAA proteins impaired bone matrix deposition and increased osteoclastogenesis in vitro. Overall, we report a novel crosstalk between the cytokine-SAA network operating in macrophages and bone homeostasis. These findings contribute to a better understanding of the mechanisms of bone loss during infection and open the way to pharmacological intervention. Additionally, our data and disclose SAA proteins as potential biomarkers of bone loss during infection by mycobacteria.


Assuntos
Mycobacterium tuberculosis , Proteína Amiloide A Sérica , Humanos , Camundongos , Animais , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Osso e Ossos/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Mycobacterium tuberculosis/metabolismo
2.
Biomolecules ; 13(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37189370

RESUMO

The sympathetic nervous system (SNS), particularly through the ß2 adrenergic receptor (ß2-AR), has been linked with breast cancer (BC) and the development of metastatic BC, specifically in the bone. Nevertheless, the potential clinical benefits of exploiting ß2-AR antagonists as a treatment for BC and bone loss-associated symptoms remain controversial. In this work, we show that, when compared to control individuals, the epinephrine levels in a cohort of BC patients are augmented in both earlier and late stages of the disease. Furthermore, through a combination of proteomic profiling and functional in vitro studies with human osteoclasts and osteoblasts, we demonstrate that paracrine signaling from parental BC under ß2-AR activation causes a robust decrease in human osteoclast differentiation and resorption activity, which is rescued in the presence of human osteoblasts. Conversely, metastatic bone tropic BC does not display this anti-osteoclastogenic effect. In conclusion, the observed changes in the proteomic profile of BC cells under ß-AR activation that take place after metastatic dissemination, together with clinical data on epinephrine levels in BC patients, provided new insights on the sympathetic control of breast cancer and its implications on osteoclastic bone resorption.


Assuntos
Reabsorção Óssea , Neoplasias da Mama , Humanos , Feminino , Adrenérgicos , Neoplasias da Mama/tratamento farmacológico , Secretoma , Proteômica , Epinefrina/farmacologia
3.
Cancers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36428611

RESUMO

Epidemiological studies and preclinical models suggest that chronic stress might accelerate breast cancer (BC) growth and the development of metastasis via sympathetic neural mechanisms. Nevertheless, the role of each adrenergic pathway (α1, α2, and ß) in human samples remains poorly depicted. Herein, we propose to characterize the profile of the sympathetic system (e.g., release of catecholamines, expression of catecholamine metabolic enzymes and adrenoreceptors) in BC patients, and ascertain its relevance in the development of distant metastasis. Our results demonstrated that BC patients exhibited increased plasma levels of catecholamines when compared with healthy donors, and this increase was more evident in BC patients with distant metastasis. Our analysis using the BC-TCGA database revealed that the genes coding the most expressed adrenoreceptors in breast tissues (ADRA2A, ADRA2C, and ADRB2, by order of expression) as well as the catecholamine synthesizing (PNMT) and degrading enzyme (MAO-A and MAO-B) genes were downregulated in BC tissues. Importantly, the expression of ADRA2A, ADRA2C, and ADRB2 was correlated with metastatic BC and BC subtypes, and thus the prognosis of the disease. Overall, we gathered evidence that under stressful conditions, both the α2- and ß2-signaling pathways might work on a synergetic matter, thus paving the way for the development of new therapeutic approaches.

4.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454788

RESUMO

Breast cancer (BRCA) remains as one the most prevalent cancers diagnosed in industrialised countries. Although the overall survival rate is high, the dissemination of BRCA cells to distant organs correlates with a significantly poor prognosis. This is due to the fact that there are no efficient therapeutic strategies designed to overcome the progression of the metastasis. Over the past decade, critical associations between stress and the prevalence of BRCA metastases were uncovered. Chronic stress and the concomitant sympathetic hyperactivation have been shown to accelerate the progression of the disease and the metastases incidence, specifically to the bone. In this review, we provide a summary of the sympathetic profile on BRCA. Additionally, the current knowledge regarding the sympathetic hyperactivity, and the underlying adrenergic signalling pathways, involved on the development of BRCA metastasis to distant organs (i.e., bone, lung, liver and brain) will be revealed. Since bone is a preferential target site for BRCA metastases, greater emphasis will be given to the contribution of α2- and ß-adrenergic signalling in BRCA bone tropism and the occurrence of osteolytic lesions.

5.
Mater Today Bio ; 13: 100219, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35243294

RESUMO

Organ-on-a-chip models have emerged as a powerful tool to model cancer metastasis and to decipher specific crosstalk between cancer cells and relevant regulators of this particular niche. Recently, the sympathetic nervous system (SNS) was proposed as an important modulator of breast cancer bone metastasis. However, epidemiological studies concerning the benefits of the SNS targeting drugs on breast cancer survival and recurrence remain controversial. Thus, the role of SNS signaling over bone metastatic cancer cellular processes still requires further clarification. Herein, we present a novel humanized organ-on-a-chip model recapitulating neuro-breast cancer crosstalk in a bone metastatic context. We developed and validated an innovative three-dimensional printing based multi-compartment microfluidic platform, allowing both selective and dynamic multicellular paracrine signaling between sympathetic neurons, bone tropic breast cancer cells and osteoclasts. The selective multicellular crosstalk in combination with biochemical, microscopic and proteomic profiling show that synergistic paracrine signaling from sympathetic neurons and osteoclasts increase breast cancer aggressiveness demonstrated by augmented levels of pro-inflammatory cytokines (e.g. interleukin-6 and macrophage inflammatory protein 1α). Overall, this work introduced a novel and versatile platform that could potentially be used to unravel new mechanisms involved in intracellular communication at the bone metastatic niche.

6.
Front Immunol ; 13: 812962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355986

RESUMO

Chronic pain associated with joint disorders, such as rheumatoid arthritis (RA), osteoarthritis (OA) and implant aseptic loosening (AL), is a highly debilitating symptom that impacts mobility and quality of life in affected patients. The neuroimmune crosstalk has been demonstrated to play a critical role in the onset and establishment of chronic pain conditions. Immune cells release cytokines and immune mediators that can activate and sensitize nociceptors evoking pain, through interaction with receptors in the sensory nerve terminals. On the other hand, sensory and sympathetic nerve fibers release neurotransmitters that bind to their specific receptor expressed on surface of immune cells, initiating an immunomodulatory role. Macrophages have been shown to be key players in the neuroimmune crosstalk. Moreover, macrophages constitute the dominant immune cell population in RA, OA and AL. Importantly, the targeting of macrophages can result in anti-nociceptive effects in chronic pain conditions. Therefore, the aim of this review is to discuss the nature and impact of the interaction between the inflammatory response and nerve fibers in these joint disorders regarding the genesis and maintenance of pain. The role of macrophages is highlighted. The alteration in the joint innervation pattern and the inflammatory response are also described. Additionally, the immunomodulatory role of sensory and sympathetic neurotransmitters is revised.


Assuntos
Artrite Reumatoide , Dor Crônica , Osteoartrite , Artralgia/metabolismo , Artrite Reumatoide/metabolismo , Dor Crônica/metabolismo , Humanos , Macrófagos , Nociceptores/metabolismo , Osteoartrite/metabolismo , Qualidade de Vida
7.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163823

RESUMO

Calcium (Ca2+) is involved as a signalling mediator in a broad variety of physiological processes. Some of the fastest responses in human body like neuronal action potential firing, to the slowest gene transcriptional regulation processes are controlled by pathways involving calcium signalling. Under pathological conditions these mechanisms are also involved in tumoral cells reprogramming, resulting in the altered expression of genes associated with cell proliferation, metastatisation and homing to the secondary metastatic site. On the other hand, calcium exerts a central function in nociception, from cues sensing in distal neurons, to signal modulation and interpretation in the central nervous system leading, in pathological conditions, to hyperalgesia, allodynia and pain chronicization. It is well known the relationship between cancer and pain when tumoral metastatic cells settle in the bones, especially in late breast cancer stage, where they alter the bone micro-environment leading to bone lesions and resulting in pain refractory to the conventional analgesic therapies. The purpose of this review is to address the Ca2+ signalling mechanisms involved in cancer cell metastatisation as well as the function of the same signalling tools in pain regulation and transmission. Finally, the possible interactions between these two cells types cohabiting the same Ca2+ rich environment will be further explored attempting to highlight new possible therapeutical targets.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Sinalização do Cálcio , Dor do Câncer/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias da Mama/complicações , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Microambiente Tumoral
8.
Bone Res ; 9(1): 9, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547275

RESUMO

The vast majority of patients with advanced breast cancer present skeletal complications that severely compromise their quality of life. Breast cancer cells are characterized by a strong tropism to the bone niche. After engraftment and colonization of bone, breast cancer cells interact with native bone cells to hinder the normal bone remodeling process and establish an osteolytic "metastatic vicious cycle". The sympathetic nervous system has emerged in recent years as an important modulator of breast cancer progression and metastasis, potentiating and accelerating the onset of the vicious cycle and leading to extensive bone degradation. Furthermore, sympathetic neurotransmitters and their cognate receptors have been shown to promote several hallmarks of breast cancer, such as proliferation, angiogenesis, immune escape, and invasion of the extracellular matrix. In this review, we assembled the current knowledge concerning the complex interactions that take place in the tumor microenvironment, with a special emphasis on sympathetic modulation of breast cancer cells and stromal cells. Notably, the differential action of epinephrine and norepinephrine, through either α- or ß-adrenergic receptors, on breast cancer progression prompts careful consideration when designing new therapeutic options. In addition, the contribution of sympathetic innervation to the formation of bone metastatic foci is highlighted. In particular, we address the remarkable ability of adrenergic signaling to condition the native bone remodeling process and modulate the bone vasculature, driving breast cancer cell engraftment in the bone niche. Finally, clinical perspectives and developments on the use of ß-adrenergic receptor inhibitors for breast cancer management and treatment are discussed.

9.
Semin Cell Dev Biol ; 112: 27-36, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32513499

RESUMO

Bone marrow (BM) is a preferential metastatic site for solid cancers, contributing to higher morbidity and mortality among millions of oncologic patients worldwide. There are no current efficient therapies to minimize this health burden. Microfluidic based in vitro models emerge as powerful alternatives to animal testing, as well as promising tools for the development of personalized medicine solutions. The complexity associated with the BM metastatic niche originated a wide variety of microfluidic platforms designed to mimic this microenvironment. This review gathers the essential parameters to design an accurate in vitro microfluidic device, based on a comparative analysis of existing models created to address the different steps of the metastatic cascade.


Assuntos
Microfluídica , Metástase Neoplásica/genética , Neoplasias/genética , Nicho de Células-Tronco/genética , Humanos , Metástase Neoplásica/patologia , Neoplasias/patologia , Medicina de Precisão , Microambiente Tumoral/genética
10.
Anal Bioanal Chem ; 412(24): 6625-6632, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32728863

RESUMO

Neuropeptide Y (NPY) is a peptide widely distributed throughout the body that is involved in various physiological processes, including the regulation of feeding behavior and energy homeostasis. 5-Carbamimidamido-2-(2,2-diphenylacetamido)-N-[(4-hydroxyphenyl)methyl]pentanamide (BIBP 3226) is a selective NPY Y1 receptor antagonist with recognized application in bone regeneration studies, requiring quantification at picogram levels. Hence, BIBP 3226 determination is proposed here by a validated HPLC-MS/MS method, based on a reversed-phase Kinetex® core-shell C8 column (2.6 µm, 150 × 2.1 mm) at 30 °C, elution in isocratic mode using a mixture of acetonitrile and water (30:70, v/v), containing 0.1% (v/v) formic acid, at 0.25 mL min-1, detection in positive ionization mode, and data acquisition in selected reaction monitoring mode. Calibration curves were linear for concentrations ranging from 0.25 to 30 ng mL-1 with LOD and LOQ values as low as 0.1 and 0.3 pg in cell extracts and 16 and 48 pg in supernatant culture media, respectively. BIBP 3226 was successfully determined in cell extracts and supernatants obtained from internalization assays. Using similar exposure conditions, the amount of BIBP 3226 found in breast cancer cells (MCF7) was 72 to 657 times higher than that found in bone marrow cells (Wt C57BL/6 mice), providing an indirect indicator of NPY Y1 receptor expression.


Assuntos
Arginina/análogos & derivados , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/análise , Animais , Arginina/análise , Cromatografia Líquida/métodos , Humanos , Limite de Detecção , Células MCF-7 , Masculino , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-32596225

RESUMO

Cartilage repair still represents a challenge for clinicians and only few effective therapies are nowadays available. In fact, surgery is limited by the tissue poor self-healing capacity while the autologous transplantation is often forsaken due to the poor in vitro expansion capacity of chondrocytes. Biomaterials science offers a unique alternative based on the replacement of the injured tissue with an artificial tissue-mimicking scaffold. However, the implantation surgical practices and the scaffold itself can be a source of bacterial infection that currently represents the first reason of implants failure due to the increasing antibiotics resistance of pathogens. So, alternative antibacterial tools to prevent infections and consequent device removal are urgently required. In this work, the role of Nisin and LL-37 peptides has been investigated as alternative to antibiotics to their antimicrobial performances for direct application at the surgical site or as doping chemicals for devices aimed at articular cartilage repair. First, peptides cytocompatibility was investigated toward human mesenchymal stem cells to determine safe concentrations; then, the broad-range antibacterial activity was verified toward the Gram-positive Staphylococcus aureus and Staphylococcus epidermidis as well as the Gram-negative Escherichia coli and Aggregatibacter actinomycetemcomitans pathogens. The peptides selective antibacterial activity was verified by a cells-bacteria co-culture assay, while chondrogenesis was assayed to exclude any interference within the differentiation route to simulate the tissue repair. In the next phase, the experiments were repeated by moving from the cell monolayer model to 3D cartilage-like spheroids to revisit the peptides activity in a more physiologically relevant environment model. Finally, the spheroid model was applied in a perfusion bioreactor to simulate an infection in the presence of circulating peptides within a physiological environment. Results suggested that 75 µg/ml Nisin can be considered as a very promising candidate since it was shown to be more cytocompatible and potent against the investigated bacteria than LL-37 in all the tested models.

12.
FASEB J ; 34(4): 5499-5511, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32096581

RESUMO

Mesenchymal stem cells (MSCs) have the capacity to self-renew and differentiate into specific cell types and are, therefore, key players during tissue repair and regeneration. The use of MSCs for the regeneration of tissues in vivo is increasingly being explored and already constitutes a promising alternative to existing clinical treatments. MSCs also exert paracrine and trophic functions, including the promotion of innervation that plays fundamental roles in regeneration and in restoration of the function of organs. Human bone marrow stem cells (hBMSCs) and human dental pulp stem cells (hDPSCs) have been used in studies that aimed at the repair and/or regeneration of bone or other tissues of the craniofacial complex. However, the capabilities of hBMSCs and hDPSCs to elicit the growth of specific axons in order to reestablish functional innervation of the healing tissues are not known. Here, we compared the neurotrophic effects of hDPSCs and hBMSCs on trigeminal and dorsal root ganglia neurons using microfluidic organs-on-chips devices. We found that hDPSCs express significantly higher levels of neurotrophins than hBMSCs and consequently neurons cocultured with hDPSCs develop longer axons in the microfluidic co-culture system when compared to neurons cocultured with hBMSCs. Moreover, hDPSCs elicited the formation of extensive axonal networks and established close contacts with neurons, a phenomenon not observed in presence of hBMSCs. Taken together, these findings indicate that hDPSCs constitute a superior option for restoring the functionality of damaged craniofacial tissues, as they are able to support and promote extensive trigeminal innervation.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Polpa Dentária/citologia , Neurogênese , Crescimento Neuronal , Células-Tronco/citologia , Animais , Células da Medula Óssea/metabolismo , Proliferação de Células , Células Cultivadas , Polpa Dentária/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo , Engenharia Tecidual
13.
J Pharm Sci ; 109(4): 1594-1604, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31935391

RESUMO

Current treatment options for bone-related disorders rely on a systemic administration of therapeutic agents that possess low solubility and intracellular bioavailability, as well as a high pharmacokinetic variability, which in turn lead to major off-target side effects. Hence, there is an unmet need of developing drug delivery systems that can improve the clinical efficacy of such therapeutic agents. Nanoparticle delivery systems might serve as promising carriers of hydrophobic molecules. Here, we propose 2 nanoparticle-based delivery systems based on monomethoxy poly(ethylene glycol)-poly(trimethyl carbonate) (mPEG-PTMC) and poly(lactide-co-glycolide) for the intracellular controlled release of a small hydrophobic drug (dexamethasone) to osteoblast cells in vitro. mPEG-PTMC self-assembles into stable nanoparticles in the absence of surfactant and shows a greater entrapment capacity of dexamethasone, while assuring bioactivity in MC3T3-E1 and bone marrow stromal cells cultured under apoptotic and osteogenic conditions, respectively. The mPEG-PTMC nanoparticles represent a potential vector for the intracellular delivery of hydrophobic drugs in the framework of bone-related diseases.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Dioxanos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Polietilenoglicóis , Polímeros
14.
FASEB J ; 33(8): 8697-8710, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017803

RESUMO

The bone marrow (BM) is the central hematopoietic organ in adult mammals, with great potential to be used as a tool to improve the efficacy of the body's response to a number of malignancies and stressful conditions. The nervous system emerges as a critical regulatory player of the BM both under homeostatic and pathologic settings, with essential roles in cellular anchorage and egress, stem cell differentiation, and endothelial cell permeability. This review collects the current knowledge on the interplay between the nervous system and the BM cell populations, with a focus on how the nervous system modulates hematopoietic stem and progenitor cell, mesenchymal stromal cell, and endothelial progenitor cell activity in BM. We have also highlighted the pathologies that have been associated with disturbances in the neuronal signaling in BM and discussed if targeting the nervous system, either by modulating the activity of specific neuronal circuits or by pharmacologically leveling the activity of sympathetic and sensorial signaling-responsive cells in BM, is a promising therapeutic approach to tackling pathologies from BM origin.-Leitão, L., Alves, C. J., Sousa, D. M., Neto, E., Conceição, F., Lamghari, M. The alliance between nerve fibers and stem cell populations in bone marrow: life partners in sickness and health.


Assuntos
Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fibras Nervosas/metabolismo , Regeneração , Animais , Células da Medula Óssea/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Fibras Nervosas/fisiologia , Transdução de Sinais
15.
FASEB J ; 33(1): 857-872, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30044924

RESUMO

Selectively recruiting bone marrow (BM)-derived stem and progenitor cells to injury sites is a promising therapeutic approach. The coordinated action of soluble factors is thought to trigger the mobilization of stem cells from the BM and recruit them to lesions to contribute to tissue regeneration. Nevertheless, the temporal response profile of the major cellular players and soluble factors involved in priming the BM and recruiting BM-derived cells to promote regeneration is unknown. We show that injury alters the BM cellular composition, introducing population-specific fluctuations during tissue regeneration. We demonstrate that injury causes an immediate, transient response of mesenchymal stromal cells and endothelial cells followed by a nonoverlapping increase in hematopoietic stem and progenitor cells. Moreover, BM reaction is identical whether the injury is inflicted on skin and muscle or also involves a bone defect, but these 2 injury paradigms trigger distinct systemic cytokine responses. Together, our results indicate that the BM response to injury in the early stages of regeneration is independent of the tissue-of-injury based on the 2 models used, but the injured tissue dictates the systemic cytokine response.-Leitão, L., Alves, C. J., Alencastre, I. S., Sousa, D. M., Neto, E., Conceição, F., Leitão, C., Aguiar, P., Almeida-Porada, G., Lamghari, M. Bone marrow cell response after injury and during early stage of regeneration is independent of the tissue-of-injury in 2 injury models.


Assuntos
Células da Medula Óssea/citologia , Modelos Biológicos , Regeneração , Ferimentos e Lesões/patologia , Animais , Linfócitos B/imunologia , Osso e Ossos/lesões , Osso e Ossos/patologia , Antígeno CD11b/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Análise por Conglomerados , Citocinas/metabolismo , Masculino , Camundongos , Músculos/lesões , Músculos/patologia , Cicatrização , Ferimentos e Lesões/imunologia
16.
J Pharm Biomed Anal ; 151: 227-234, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29367160

RESUMO

Collision induced dissociation of triple quadrupole mass spectrometer (CID-QqQ) and high-energy collision dissociation (HCD) of Orbitrap were compared for four neuropeptides Y Y1 (NPY Y1) receptor antagonists and showed similar qualitative fragmentation and structural information. Orbitrap high resolution and high mass accuracy HCD fragmentation spectra allowed unambiguous identification of product ions in the range 0.04-4.25 ppm. Orbitrap mass spectrometry showed abundant analyte-specific product ions also observed on CID-QqQ. These results show the suitability of these product ions for use in quantitative analysis by MRM mode. In addition, it was found that all compounds could be determined at levels >1 µg L-1 using the QqQ instrument and that the detection limits for this analyzer ranged from 0.02 to 0.6 µg L-1. Overall, the results obtained from experiments acquired in QqQ show a good agreement with those acquired from the Orbitrap instrument allowing the use of this relatively inexpensive technique (QqQ) for accurate quantification of these compounds in clinical and academic applications.


Assuntos
Arginina/análogos & derivados , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Espectrometria de Massas em Tandem/métodos , Arginina/análise , Arginina/química , Limite de Detecção , Espectrometria de Massas em Tandem/economia , Espectrometria de Massas em Tandem/instrumentação
17.
Sci Rep ; 7(1): 17374, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234086

RESUMO

N-acetyl cysteine (NAC) is an FDA-approved drug clinically applied on a broad range of pathologies. Further research has been conducted with this drug to benefit from its antimicrobial activity potential. However, NAC has a very short half-life and therefore strategies that accomplish high local concentrations would be beneficial. In this study, covalent immobilization of NAC was performed, in order to obtain long-lasting high local concentration of the drug onto a chitosan(Ch)-derived implant-related coating. For the development of NAC-functionalized Ch films, water-based carbodiimide chemistry was applied to avoid the use of toxic organic solvents. Here we report the optimization steps performed to immobilize NAC onto the surface of pre-prepared Ch coatings, to ensure full exposure of NAC. Surface characterization using ellipsometry, water contact angle measurements and X-ray photoelectron spectroscopy (XPS), demonstrated the success of NAC immobilization at 4 mg/mL. Quartz crystal microbalance with dissipation (QCM-D) demonstrated that surface immobilized NAC decreases protein adsorption to Ch coatings. Biological studies confirmed that immobilized NAC4 avoids methicillin-resistant Staphylococcus aureus adhesion to Ch coating, impairing biofilm formation, without inducing cytotoxic effects. This is particularly interesting towards further developments as a prevention coating.


Assuntos
Acetilcisteína/química , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Acetilcisteína/farmacologia , Quitosana/química , Teste de Materiais , Staphylococcus aureus Resistente à Meticilina/fisiologia , Propriedades de Superfície
18.
PLoS One ; 12(7): e0181612, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742111

RESUMO

Limited knowledge from mechanistic studies on adult sensory neuronal activity was generated, to some extent, in recapitulated adult in vivo 3D microenvironment. To fill this gap there is a real need to better characterize the adult dorsal root ganglia (aDRG) organotypic cultures to make these in vitro systems exploitable for different approaches, ranging from basic neurobiology to regenerative therapies, to address the sensory nervous system in adult stage. We conducted a direct head-to-head comparison of aDRG and embryonic DRG (eDRG) organotypic culture focusing on axonal growth, neuropeptides expression and receptors tyrosine kinase (RTK) activation associated with neuronal survival, proliferation and differentiation. To identify alterations related to culture conditions, these parameters were also addressed in retrieved aDRG and eDRG and compared with organotypic cultures. Under similar neurotrophic stimulation, aDRG organotypic cultures displayed lower axonal outgrowth rate supported by reduced expression of growth associated protein-43 and high levels of RhoA and glycogen synthase kinase 3 beta mRNA transcripts. In addition, differential alteration in sensory neuropeptides expression, namely calcitonin gene-related peptide and substance P, was detected and was mainly pronounced at gene expression levels. Among 39 different RTK, five receptors from three RTK families were emphasized: tropomyosin receptor kinase A (TrkA), epidermal growth factor receptors (EGFR, ErbB2 and ErbB3) and platelet-derived growth factor receptor (PDGFR). Of note, except for EGFR, the phosphorylation of these receptors was dependent on DRG developmental stage and/or culture condition. In addition, EGFR and PDGFR displayed alterations in their cellular expression pattern in cultured DRG. Overall we provided valuable information particularly important when addressing in vitro the molecular mechanisms associated with development, maturation and regeneration of the sensory nervous system.


Assuntos
Axônios/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/crescimento & desenvolvimento , Neuropeptídeos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Axônios/ultraestrutura , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Cultivadas , Gânglios Espinais/metabolismo , Camundongos Endogâmicos C57BL , Neuropeptídeos/análise , Fosforilação , Receptores Proteína Tirosina Quinases/análise , Substância P/análise , Substância P/metabolismo
19.
Curr Drug Targets ; 18(6): 696-704, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27397066

RESUMO

Current therapeutic drugs for the treatment of bone loss-associated disorders such as osteoporosis and metastatic bone disease have limited clinical outcomes, namely in terms of efficiency and sustainability. Given the ageing of population in developed countries and the cumulative costs with treatment, bone loss-associated disorders represent a major socioeconomic burden worldwide. In this review, the therapeutic agents targeting bone loss tested in clinical and pre-clinical trials are summarized, as well as the challenges encountered by clinicians and patients. In an effort to attain costeffective clinical outcomes, potential cellular and signalling targets are disclosed.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Osteoporose/tratamento farmacológico , Animais , Conservadores da Densidade Óssea/economia , Conservadores da Densidade Óssea/farmacologia , Ensaios Clínicos como Assunto , Análise Custo-Benefício , Quimioterapia Combinada , Humanos , Osteoblastos/efeitos dos fármacos
20.
FEBS J ; 277(1): 263-75, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19954489

RESUMO

To better understand the role of neuropeptide Y (NPY) in bone homeostasis, as its function in the regulation of bone mass is unclear, we assessed its expression in this tissue. By immunohistochemistry, we demonstrated, both at embryonic stages and in the adult, that NPY is synthesized by osteoblasts, osteocytes, and chondrocytes. Moreover, peptidylglycine alpha-amidating monooxygenase, the enzyme responsible for NPY activation by amidation, was also expressed in these cell types. Using transthyretin (TTR) KO mice as a model of augmented NPY levels, we showed that this strain has increased NPY content in the bone, further validating the expression of this neuropeptide by bone cells. Moreover, the higher amidated neuropeptide levels in TTR KO mice were related to increased bone mineral density and trabecular volume. Additionally, RT-PCR analysis established that NPY is not only expressed in MC3T3-E1 osteoblastic cells and bone marrow stromal cells (BMSCs), but is also detectable by RIA in BMSCs undergoing osteoblastic differentiation. In agreement with our in vivo observations, in vitro, TTR KO BMSCs differentiated in osteoblasts had increased NPY levels and exhibited enhanced competence in undergoing osteoblastic differentiation. In summary, this work contributes to a better understanding of the role of NPY in the regulation of bone formation by showing that this neuropeptide is expressed in bone cells and that increased amidated neuropeptide content is related to increased bone mass.


Assuntos
Neuropeptídeo Y/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Pré-Albumina/deficiência , Células 3T3 , Amidas/química , Amidas/metabolismo , Animais , Sequência de Bases , Densidade Óssea/fisiologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Condrócitos/metabolismo , Primers do DNA/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeo Y/química , Neuropeptídeo Y/genética , Osteócitos/metabolismo , Pré-Albumina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA