Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 1754, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075278

RESUMO

Perception of pathogens by host pattern recognition receptors (PRRs) or R proteins is a prerequisite to promote successful immune responses. The Hsp70/Hsp90 organizing protein Hop/Sti1, a multifunctional cochaperone, has been implicated in the maturation of a receptor-like kinase (RLK) necessary for chitin sensing. However, it remains unknown whether Hop/Sti1 is generally participating in PRR genesis. Using RNA-interference (RNAi), we silenced Hop/Sti1 expression in Nicotiana tabacum to gain further insight into the role of the cochaperone in plant defense responses. As expected, transgenic plants do not respond to chitin treatment anymore. In contrast to this, trafficking and functionality of the flagellin PRR FLS2 were unaltered, suggesting a selective involvement of Hop/Sti1 during PRR maturation. Furthermore, Hop/Sti1 was identified as a cellular determinant of Potato virus Y (PVY) symptom development in tobacco, since PVY was able to accumulate to near wild-type level without provoking the usual veinal necrosis phenotype. In addition, typical antiviral host defense responses were suppressed in the transgenic plants. These data suggest that perception of PVY is dependent on Hop/Sti1-mediated receptor maturation, while viral symptoms represent a failing attempt to restrict PVY spread. In addition, Hop/Sti1 colocalized with virus-induced membrane aggregates in wild-type plants. The retention of Hop/Sti1 in potential viral replication complexes suggests a role during viral translation/replication, explaining why RNAi-lines do not exhibit increased susceptibility to PVY. This study provides evidence for a dual role of Hop/Sti1 in PRR maturation and pathogen perception as well as in promoting viral proliferation.

2.
FEBS Open Bio ; 6(11): 1141-1154, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833854

RESUMO

Eukaryotic nuclei are subdivided into subnuclear structures. Among the most prominent of these structures are the nucleolus and the PML nuclear bodies (PML-NBs). PML-NBs are spherical multiprotein aggregates of varying size localized in the interchromosomal area. PML-NB formation is dependent on the presence of the promyelocytic leukemia protein (PML) as well as on post-translational modification of core components by covalent attachment of the small ubiquitin-like modifier (SUMO). So far, PML-NBs as well as PML have been described in mammalian cells only, whereas no orthologs are known in the plant kingdom. In order to investigate conserved mechanisms in PML targeting, we expressed human PML (hPML) fused to the GFP in Nicotiana benthamiana. Using confocal laser scanning microscopy and coimmunoprecipitation followed by mass spectrometric analysis, we found the fusion protein in association with nucleolar constituents. Importantly, mutants of hPML, which are no longer SUMOylated, showed altered localizations, implying SUMO-dependent targeting of hPML in plants as has previously been shown for mammalian cells. Interestingly, in the presence of proteasome inhibitors, hPML could also be found in the nucleolus of mammalian cells suggesting conserved targeting mechanisms of PML across kingdoms. Finally, Solanum tuberosum COP1, a proposed PML-like protein from plants, was fused to the red fluorescent protein (RFP) and coexpressed with hPML::eGFP. Microscopic analysis confirmed the localization of COP1::RFP in nuclear speckles. However, hPML::eGFP did not colocalize with COP1::RFP. Hence, we conclude that plants do not possess specialized PML-NBs, but that their functions may be covered by other subnuclear structures like the nucleolus. Database Proteomics data have been deposited to the ProteomeXchange Consortium with the identifier PXD004254.

3.
Viruses ; 8(3): 73, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26978388

RESUMO

In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.


Assuntos
Citomegalovirus/genética , Membrana Nuclear/química , Células Vegetais , Proteínas Recombinantes/análise , Proteínas Virais/análise , Expressão Gênica , Células HeLa , Humanos , Imunoprecipitação , Microscopia Confocal , Proteínas Recombinantes/genética , Nicotiana , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA