Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 245, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778055

RESUMO

Lamins A and C, encoded by the LMNA gene, are nuclear intermediate filaments that provide structural support to the nucleus and contribute to chromatin organization and transcriptional regulation. LMNA mutations cause muscular dystrophies, dilated cardiomyopathy, and other diseases. The mechanisms by which many LMNA mutations result in muscle-specific diseases have remained elusive, presenting a major hurdle in the development of effective treatments. Previous studies using striated muscle laminopathy mouse models found that cytoskeletal forces acting on mechanically fragile Lmna-mutant nuclei led to transient nuclear envelope rupture, extensive DNA damage, and activation of DNA damage response (DDR) pathways in skeletal muscle cells in vitro and in vivo. Furthermore, hearts of Lmna mutant mice have elevated activation of the tumor suppressor protein p53, a central regulator of DDR signaling. We hypothesized that elevated p53 activation could present a pathogenic mechanism in striated muscle laminopathies, and that eliminating p53 activation could improve muscle function and survival in laminopathy mouse models. Supporting a pathogenic function of p53 activation in muscle, stabilization of p53 was sufficient to reduce contractility and viability in wild-type muscle cells in vitro. Using three laminopathy models, we found that increased p53 activity in Lmna-mutant muscle cells primarily resulted from mechanically induced damage to the myonuclei, and not from altered transcriptional regulation due to loss of lamin A/C expression. However, global deletion of p53 in a severe muscle laminopathy model did not reduce the disease phenotype or increase survival, indicating that additional drivers of disease must contribute to the disease pathogenesis.

2.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361041

RESUMO

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapia
3.
APL Bioeng ; 7(4): 046116, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058993

RESUMO

Breast cancer metastasis is initiated by invasion of tumor cells into the collagen type I-rich stroma to reach adjacent blood vessels. Prior work has identified that metabolic plasticity is a key requirement of tumor cell invasion into collagen. However, it remains largely unclear how blood vessels affect this relationship. Here, we developed a microfluidic platform to analyze how tumor cells invade collagen in the presence and absence of a microvascular channel. We demonstrate that endothelial cells secrete pro-migratory factors that direct tumor cell invasion toward the microvessel. Analysis of tumor cell metabolism using metabolic imaging, metabolomics, and computational flux balance analysis revealed that these changes are accompanied by increased rates of glycolysis and oxygen consumption caused by broad alterations of glucose metabolism. Indeed, restricting glucose availability decreased endothelial cell-induced tumor cell invasion. Our results suggest that endothelial cells promote tumor invasion into the stroma due, in part, to reprogramming tumor cell metabolism.

4.
Curr Protoc ; 3(7): e847, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37459474

RESUMO

Cells in living tissues are exposed to substantial mechanical forces and constraints imposed by neighboring cells, the extracellular matrix, and external factors. Mechanical forces and physical confinement can drive various cellular responses, including changes in gene expression, cell growth, differentiation, and migration, all of which have important implications in physiological and pathological processes, such as immune cell migration or cancer metastasis. Previous studies have shown that nuclear deformation induced by 3D confinement promotes cell contractility but can also cause DNA damage and changes in chromatin organization, thereby motivating further studies in nuclear mechanobiology. In this protocol, we present a custom-developed, easy-to-use, robust, and low-cost approach to induce precisely defined physical confinement on cells using agarose pads with micropillars and externally applied weights. We validated the device by confirming nuclear deformation, changes in nuclear area, and cell viability after confinement. The device is suitable for short- and long-term confinement studies and compatible with imaging of both live and fixed samples, thus presenting a versatile approach to studying the impact of 3D cell confinement and nuclear deformation on cellular function. This article contains detailed protocols for the fabrication and use of the confinement device, including live cell imaging and labeling of fixed cells for subsequent analysis. These protocols can be amended for specific applications. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Design and fabrication of the confinement device wafer Basic Protocol 2: Cell confinement assay Support Protocol 1: Fixation and staining of cells after confinement Support protocol 2: Live/dead staining of cells during confinement.


Assuntos
Núcleo Celular , Fenômenos Mecânicos , Sefarose/metabolismo , Núcleo Celular/metabolismo , Movimento Celular/fisiologia , Ciclo Celular
5.
Mol Oncol ; 17(6): 1007-1023, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36461911

RESUMO

While organ-confined prostate cancer (PCa) is mostly therapeutically manageable, metastatic progression of PCa remains an unmet clinical challenge. Resistance to anoikis, a form of cell death initiated by cell detachment from the surrounding extracellular matrix, is one of the cellular processes critical for PCa progression towards aggressive disease. Therefore, further understanding of anoikis regulation in PCa might provide therapeutic opportunities. Here, we discover that PCa tumours with concomitant inhibition of two tumour suppressor phosphatases, PP2A and PTEN, are particularly aggressive, having < 50% 5-year secondary-therapy-free patient survival. Functionally, overexpression of PME-1, a methylesterase for the catalytic PP2A-C subunit, inhibits anoikis in PTEN-deficient PCa cells. In vivo, PME-1 inhibition increased apoptosis in in ovo PCa tumour xenografts, and attenuated PCa cell survival in zebrafish circulation. Molecularly, PME-1-deficient PC3 cells display increased trimethylation at lysines 9 and 27 of histone H3 (H3K9me3 and H3K27me3), a phenotype known to correlate with increased apoptosis sensitivity. In summary, our results demonstrate that PME-1 supports anoikis resistance in PTEN-deficient PCa cells. Clinically, these results identify PME-1 as a candidate biomarker for a subset of particularly aggressive PTEN-deficient PCa.


Assuntos
Anoikis , Hidrolases de Éster Carboxílico , Neoplasias da Próstata , Animais , Humanos , Masculino , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , PTEN Fosfo-Hidrolase/genética , Peixe-Zebra , Hidrolases de Éster Carboxílico/genética
6.
iScience ; 25(9): 104978, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36117991

RESUMO

During migration, cells often squeeze through small constrictions, requiring extensive deformation. We hypothesized that nuclear deformation associated with such confined migration could alter chromatin organization and function. By studying cells migrating through microfluidic devices that mimic interstitial spaces in vivo, we found that confined migration results in increased H3K9me3 and H3K27me3 heterochromatin marks that persist for days. This "confined migration-induced heterochromatin" (CMiH) was distinct from heterochromatin formation during migration initiation. Confined migration decreased chromatin accessibility at intergenic regions near centromeres and telomeres, suggesting heterochromatin spreading from existing sites. Consistent with the overall decrease in accessibility, global transcription was decreased during confined migration. Intriguingly, we also identified increased accessibility at promoter regions of genes linked to chromatin silencing, tumor invasion, and DNA damage response. Inhibiting CMiH reduced migration speed, suggesting that CMiH promotes confined migration. Together, our findings indicate that confined migration induces chromatin changes that regulate cell migration and other functions.

7.
Oncogene ; 41(36): 4211-4230, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35896617

RESUMO

Aberrations in nuclear size and shape are commonly used to identify cancerous tissue. However, it remains unclear whether the disturbed nuclear structure directly contributes to the cancer pathology or is merely a consequence of other events occurring during tumorigenesis. Here, we show that highly invasive and proliferative breast cancer cells frequently exhibit Akt-driven lower expression of the nuclear envelope proteins lamin A/C, leading to increased nuclear deformability that permits enhanced cell migration through confined environments that mimic interstitial spaces encountered during metastasis. Importantly, increasing lamin A/C expression in highly invasive breast cancer cells reflected gene expression changes characteristic of human breast tumors with higher LMNA expression, and specifically affected pathways related to cell-ECM interactions, cell metabolism, and PI3K/Akt signaling. Further supporting an important role of lamins in breast cancer metastasis, analysis of lamin levels in human breast tumors revealed a significant association between lower lamin A levels, Akt signaling, and decreased disease-free survival. These findings suggest that downregulation of lamin A/C in breast cancer cells may influence both cellular physical properties and biochemical signaling to promote metastatic progression.


Assuntos
Neoplasias da Mama , Lamina Tipo A , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Lamina Tipo A/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
8.
Front Cell Dev Biol ; 10: 875132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721517

RESUMO

Ataxia-telangiectasia mutated (ATM) is one of the three main apical kinases at the crux of DNA damage response and repair in mammalian cells. ATM activates a cascade of downstream effector proteins to regulate DNA repair and cell cycle checkpoints in response to DNA double-strand breaks. While ATM is predominantly known for its role in DNA damage response and repair, new roles of ATM have recently begun to emerge, such as in regulating oxidative stress or metabolic pathways. Here, we report the surprising discovery that ATM inhibition and deletion lead to reduced expression of the nuclear envelope protein lamin A. Lamins are nuclear intermediate filaments that modulate nuclear shape, structure, and stiffness. Accordingly, inhibition or deletion of ATM resulted in increased nuclear deformability and enhanced cell migration through confined spaces, which requires substantial nuclear deformation. These findings point to a novel connection between ATM and lamin A and may have broad implications for cells with ATM mutations-as found in patients suffering from Ataxia Telangiectasia and many human cancers-which could lead to enhanced cell migration and increased metastatic potential.

9.
Trends Mol Med ; 28(9): 710-725, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717527

RESUMO

Mechanobiology is a rapidly growing research area focused on how mechanical forces and properties influence biological systems at the cell, molecular, and tissue level, and how those biological systems, in turn, control mechanical parameters. Recently, it has become apparent that disrupted mechanobiology has a significant role in many diseases, from cardiovascular disease to muscular dystrophy and cancer. An improved understanding of this intricate process could be harnessed toward developing alternative and more targeted treatment strategies, and to advance the fields of regenerative and personalized medicine. Modulating the mechanical properties of the cellular microenvironment has already been used successfully to boost antitumor immune responses and to induce cardiac and spinal regeneration, providing inspiration for further research in this area.


Assuntos
Neoplasias , Biofísica , Humanos , Mecanotransdução Celular , Microambiente Tumoral
10.
Methods Mol Biol ; 2502: 329-349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412249

RESUMO

Cancer metastasis, that is, the spreading of tumor cells from the primary tumor to distant sites, requires cancer cells to travel through pores substantially smaller than their cross section . This "confined migration" requires substantial deformation by the relatively large and rigid nucleus, which can impact nuclear compartmentalization, trigger cellular mechanotransduction pathways, and increase genomic instability. To improve our understanding of how cells perform and respond to confined migration, we developed polydimethylsiloxane (PDMS) microfluidic devices in which cells migrate through a precisely controlled "field of pillars" that closely mimic the intermittent confinement of tumor microenvironments and interstitial spaces. The devices can be designed with various densities of pillars, ranging from a very low density that does not require nuclear deformation to high densities that present microenvironment conditions with severe confinement. The devices enable assessment of cellular fitness for confined migration based on the distance traveled through the constriction area over several days. In this protocol, we present two complementary techniques to generate silicon master molds for the device fabrication: (1) SU-8 soft lithography for rapid prototyping and for devices with relatively large features; and (2) reactive ion etching (RIE) to achieve finer features and more durable molds. In addition, we describe the production, use, and validation of the devices, along with the analysis pipeline for experiments using the devices with fluorescently labeled cells. Collectively, this protocol enables the study of confined migration and is readily amendable to investigate other aspects of confined migration mechanobiology, such as nuclear pore complex function in response to nuclear deformation.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Biofísica , Movimento Celular/fisiologia , Núcleo Celular , Mecanotransdução Celular
11.
ACS Chem Biol ; 17(3): 680-700, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199530

RESUMO

Background: Lower survival rates for many cancer types correlate with changes in nuclear size/scaling in a tumor-type/tissue-specific manner. Hypothesizing that such changes might confer an advantage to tumor cells, we aimed at the identification of commercially available compounds to guide further mechanistic studies. We therefore screened for Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved compounds that reverse the direction of characteristic tumor nuclear size changes in PC3, HCT116, and H1299 cell lines reflecting, respectively, prostate adenocarcinoma, colonic adenocarcinoma, and small-cell squamous lung cancer. Results: We found distinct, largely nonoverlapping sets of compounds that rectify nuclear size changes for each tumor cell line. Several classes of compounds including, e.g., serotonin uptake inhibitors, cyclo-oxygenase inhibitors, ß-adrenergic receptor agonists, and Na+/K+ ATPase inhibitors, displayed coherent nuclear size phenotypes focused on a particular cell line or across cell lines and treatment conditions. Several compounds from classes far afield from current chemotherapy regimens were also identified. Seven nuclear size-rectifying compounds selected for further investigation all inhibited cell migration and/or invasion. Conclusions: Our study provides (a) proof of concept that nuclear size might be a valuable target to reduce cell migration/invasion in cancer treatment and (b) the most thorough collection of tool compounds to date reversing nuclear size changes specific to individual cancer-type cell lines. Although these compounds still need to be tested in primary cancer cells, the cell line-specific nuclear size and migration/invasion responses to particular drug classes suggest that cancer type-specific nuclear size rectifiers may help reduce metastatic spread.


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Linhagem Celular Tumoral , Movimento Celular , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle , Neoplasias da Próstata/tratamento farmacológico
12.
Nat Biomed Eng ; 6(7): 882-897, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34931077

RESUMO

Targeting the delivery of therapeutics specifically to diseased tissue enhances their efficacy and decreases their side effects. Here we show that mesenchymal stromal cells with their nuclei removed by density-gradient centrifugation following the genetic modification of the cells for their display of chemoattractant receptors and endothelial-cell-binding molecules are effective vehicles for the targeted delivery of therapeutics. The enucleated cells neither proliferate nor permanently engraft in the host, yet retain the organelles for energy and protein production, undergo integrin-regulated adhesion to inflamed endothelial cells, and actively home to chemokine gradients established by diseased tissues. In mouse models of acute inflammation and of pancreatitis, systemically administered enucleated cells expressing two types of chemokine receptor and an endothelial adhesion molecule enhanced the delivery of an anti-inflammatory cytokine to diseased tissue (with respect to unmodified stromal cells and to exosomes derived from bone-marrow-derived stromal cells), attenuating inflammation and ameliorating disease pathology. Enucleated cells retain most of the cells' functionality, yet acquire the cargo-carrying characteristics of cell-free delivery systems, and hence represent a versatile delivery vehicle and therapeutic system.


Assuntos
Sistemas de Liberação de Medicamentos , Células-Tronco Mesenquimais , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Camundongos
13.
Adv Healthc Mater ; 10(23): e2100625, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668667

RESUMO

Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environmental architecture is particularly relevant in the context of cancer cell metastasis, where cells migrate through small constrictions in their microenvironment to invade surrounding tissues. Here, a synthetic hydrogel scaffold with an interconnected, random, 3D microchannel network is presented that is functionalized with collagen to promote cell adhesion. It is shown that cancer cells can invade such scaffolds within days, and both the microarchitecture and stiffness of the hydrogel modulate cell invasion and nuclear dynamics of the cells. Specifically, it is found that cell migration through the microchannels is a function of hydrogel stiffness. In addition to this, it is shown that the hydrogel stiffness and confinement, influence the occurrence of nuclear envelope ruptures of cells. The tunable hydrogel microarchitecture and stiffness thus provide a novel tool to investigate cancer cell invasion as a function of the 3D microenvironment. Furthermore, the material provides a promising strategy to control cell positioning, migration, and cellular function in biological applications, such as tissue engineering.


Assuntos
Hidrogéis , Engenharia Tecidual , Animais , Adesão Celular , Movimento Celular , Colágeno , Humanos , Alicerces Teciduais
14.
Dev Cell ; 56(2): 156-158, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33497620

RESUMO

How cells sense their physical microenvironment remains incompletely understood. In two recent Science articles, Lomakin et al. (2020) and Venturini et al. (2020) demonstrate that progressive nuclear deformation associated with cellular confinement triggers intracellular events that promote cell contractility and migration, revealing the nucleus to serve as a central mechanosensor.


Assuntos
Núcleo Celular , Propriocepção , Linhagem Celular Tumoral , Movimento Celular , Citoplasma
15.
Curr Biol ; 31(4): 753-765.e6, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33326770

RESUMO

Cancer metastasis, i.e., the spreading of tumor cells from the primary tumor to distant organs, is responsible for the vast majority of cancer deaths. In the process, cancer cells migrate through narrow interstitial spaces substantially smaller in cross-section than the cell. During such confined migration, cancer cells experience extensive nuclear deformation, nuclear envelope rupture, and DNA damage. The molecular mechanisms responsible for the confined migration-induced DNA damage remain incompletely understood. Although in some cell lines, DNA damage is closely associated with nuclear envelope rupture, we show that, in others, mechanical deformation of the nucleus is sufficient to cause DNA damage, even in the absence of nuclear envelope rupture. This deformation-induced DNA damage, unlike nuclear-envelope-rupture-induced DNA damage, occurs primarily in S/G2 phase of the cell cycle and is associated with replication forks. Nuclear deformation, resulting from either confined migration or external cell compression, increases replication stress, possibly by increasing replication fork stalling, providing a molecular mechanism for the deformation-induced DNA damage. Thus, we have uncovered a new mechanism for mechanically induced DNA damage, linking mechanical deformation of the nucleus to DNA replication stress. This mechanically induced DNA damage could not only increase genomic instability in metastasizing cancer cells but could also cause DNA damage in non-migrating cells and tissues that experience mechanical compression during development, thereby contributing to tumorigenesis and DNA damage response activation.


Assuntos
Núcleo Celular/genética , Núcleo Celular/patologia , Dano ao DNA , Replicação do DNA , Estresse Fisiológico , Carcinogênese , Linhagem Celular , Movimento Celular , Instabilidade Genômica , Humanos , Neoplasias/genética , Neoplasias/patologia , Membrana Nuclear/patologia
16.
J Cell Biol ; 218(12): 4093-4111, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31690619

RESUMO

Cells migrate in vivo through complex confining microenvironments, which induce significant nuclear deformation that may lead to nuclear blebbing and nuclear envelope rupture. While actomyosin contractility has been implicated in regulating nuclear envelope integrity, the exact mechanism remains unknown. Here, we argue that confinement-induced activation of RhoA/myosin-II contractility, coupled with LINC complex-dependent nuclear anchoring at the cell posterior, locally increases cytoplasmic pressure and promotes passive influx of cytoplasmic constituents into the nucleus without altering nuclear efflux. Elevated nuclear influx is accompanied by nuclear volume expansion, blebbing, and rupture, ultimately resulting in reduced cell motility. Moreover, inhibition of nuclear efflux is sufficient to increase nuclear volume and blebbing on two-dimensional surfaces, and acts synergistically with RhoA/myosin-II contractility to further augment blebbing in confinement. Cumulatively, confinement regulates nuclear size, nuclear integrity, and cell motility by perturbing nuclear flux homeostasis via a RhoA-dependent pathway.


Assuntos
Miosina Tipo II/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Transferência Ressonante de Energia de Fluorescência , Homeostase , Humanos , Membrana Nuclear/metabolismo , Microambiente Tumoral
17.
Biomaterials ; 224: 119489, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31546097

RESUMO

While ductal carcinoma in situ (DCIS) is known as a precursor lesion to most invasive breast carcinomas, the mechanisms underlying this transition remain enigmatic. DCIS is typically diagnosed by the mammographic detection of microcalcifications (MC). MCs consisting of non-stoichiometric hydroxyapatite (HA) mineral are frequently associated with malignant disease, yet it is unclear whether HA can actively promote malignancy. To investigate this outstanding question, we compared phenotypic outcomes of breast cancer cells cultured in control or HA-containing poly(lactide-co-glycolide) (PLG) scaffolds. Exposure to HA mineral in scaffolds increased the expression of pro-tumorigenic interleukin-8 (IL-8) among transformed but not benign cells. Notably, MCF10DCIS.com cells cultured in HA scaffolds adopted morphological changes associated with increased invasiveness and exhibited increased motility that were dependent on IL-8 signaling. Moreover, MCF10DCIS.com xenografts in HA scaffolds displayed evidence of enhanced malignant progression relative to xenografts in control scaffolds. These experimental findings were supported by a pathological analysis of clinical DCIS specimens, which correlated the presence of MCs with increased IL-8 staining and ductal proliferation. Collectively, our work suggests that HA mineral may stimulate malignancy in preinvasive DCIS cells and validate PLG scaffolds as useful tools to study cell-mineral interactions.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Durapatita/farmacologia , Minerais/farmacologia , Modelos Biológicos , Engenharia Tecidual , Animais , Neoplasias da Mama/complicações , Calcinose/complicações , Carcinoma Intraductal não Infiltrante/complicações , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Interleucina-8/metabolismo , Camundongos Nus , Invasividade Neoplásica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Alicerces Teciduais/química
18.
Lab Chip ; 19(21): 3652-3663, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31559980

RESUMO

The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through tissues and across endothelial cell layers, and changes to the mechanical properties of the nucleus can serve as novel biomarkers in processes such as cancer progression and stem cell differentiation. However, current techniques to measure the viscoelastic nuclear mechanical properties are often time consuming, limited to probing one cell at a time, or require expensive, highly specialized equipment. Furthermore, many current assays do not measure time-dependent properties, which are characteristic of viscoelastic materials. Here, we present an easy-to-use microfluidic device that applies the well-established approach of micropipette aspiration, adapted to measure many cells in parallel. The device design allows rapid loading and purging of cells for measurements, and minimizes clogging by large particles or clusters of cells. Combined with a semi-automated image analysis pipeline, the microfluidic device approach enables significantly increased experimental throughput. We validated the experimental platform by comparing computational models of the fluid mechanics in the device with experimental measurements of fluid flow. In addition, we conducted experiments on cells lacking the nuclear envelope protein lamin A/C and wild-type controls, which have well-characterized nuclear mechanical properties. Fitting time-dependent nuclear deformation data to power law and different viscoelastic models revealed that loss of lamin A/C significantly altered the elastic and viscous properties of the nucleus, resulting in substantially increased nuclear deformability. Lastly, to demonstrate the versatility of the devices, we characterized the viscoelastic nuclear mechanical properties in a variety of cell lines and experimental model systems, including human skin fibroblasts from an individual with a mutation in the lamin gene associated with dilated cardiomyopathy, healthy control fibroblasts, induced pluripotent stem cells (iPSCs), and human tumor cells. Taken together, these experiments demonstrate the ability of the microfluidic device and automated image analysis platform to provide robust, high throughput measurements of nuclear mechanical properties, including time-dependent elastic and viscous behavior, in a broad range of applications.


Assuntos
Núcleo Celular/química , Desenho de Equipamento , Fibroblastos/química , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Estresse Mecânico , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Fibroblastos/citologia , Humanos , Camundongos , Microfluídica/métodos
19.
Philos Trans R Soc Lond B Biol Sci ; 374(1779): 20180225, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31431171

RESUMO

Directional cell migration in dense three-dimensional (3D) environments critically depends upon shape adaptation and is impeded depending on the size and rigidity of the nucleus. Accordingly, the nucleus is primarily understood as a physical obstacle; however, its pro-migratory functions by stepwise deformation and reshaping remain unclear. Using atomic force spectroscopy, time-lapse fluorescence microscopy and shape change analysis tools, we determined the nuclear size, deformability, morphology and shape change of HT1080 fibrosarcoma cells expressing the Fucci cell cycle indicator or being pre-treated with chromatin-decondensating agent TSA. We show oscillating peak accelerations during migration through 3D collagen matrices and microdevices that occur during shape reversion of deformed nuclei (recoil), and increase with confinement. During G1 cell-cycle phase, nucleus stiffness was increased and yielded further increased speed fluctuations together with sustained cell migration rates in confinement when compared to interphase populations or to periods of intrinsic nuclear softening in the S/G2 cell-cycle phase. Likewise, nuclear softening by pharmacological chromatin decondensation or after lamin A/C depletion reduced peak oscillations in confinement. In conclusion, deformation and recoil of the stiff nucleus contributes to saltatory locomotion in dense tissues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.


Assuntos
Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Aceleração , Fenômenos Biofísicos , Linhagem Celular Tumoral , Cromatina/metabolismo , Colágeno/metabolismo , Humanos
20.
Philos Trans R Soc Lond B Biol Sci ; 374(1779): 20180219, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31431175

RESUMO

Cancer is one of the most devastating diseases of our time, with 17 million new cancer cases and 9.5 million cancer deaths in 2018 worldwide. The mortality associated with cancer results primarily from metastasis, i.e. the spreading of cancer cells from the primary tumour to other organs. The invasion and migration of cells through basement membranes, tight interstitial spaces and endothelial cell layers are key steps in the metastatic cascade. Recent studies demonstrated that cell migration through three-dimensional environments that mimic the in vivo conditions significantly differs from their migration on two-dimensional surfaces. Here, we review recent technological advances made in the field of cancer research that provide more 'true to the source' experimental platforms and measurements for the study of cancer cell invasion and migration in three-dimensional environments. These include microfabrication, three-dimensional bioprinting and intravital imaging tools, along with force and stiffness measurements of cells and their environments. These techniques will enable new studies that better reflect the physiological environment found in vivo, thereby producing more robust results. The knowledge achieved through these studies will aid in the development of new treatment options with the potential to ultimately lighten the devastating cost cancer inflicts on patients and their families. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.


Assuntos
Bioengenharia/métodos , Movimento Celular , Neoplasias/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA