Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nutrients ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337656

RESUMO

The production of olive oil has important economic repercussions in Mediterranean countries but also a considerable impact on the environment. This production generates enormous quantities of waste and by-products, which can be exploited as new raw materials to obtain innovative ingredients and therefore make the olive production more sustainable. In a previous study, we decided to foster olive seeds by generating two protein hydrolysates using food-grade enzymes, alcalase (AH) and papain (PH). These hydrolysates have shown, both in vitro and at the cellular level, antioxidant and antidiabetic activities, being able to inhibit the activity of the DPP-IV enzyme and modulate the secretion of GLP-1. Given the multifunctional behavior of peptides, both hydrolysates displayed dual hypocholesterolemic activity, inhibiting the activity of HMGCoAR and impairing the PPI of PCSK9/LDLR, with an IC50 equal to 0.61 mg/mL and 0.31 mg/mL for AH and PH, respectively. Furthermore, both samples restored LDLR protein levels on the membrane of human hepatic HepG2 cells, increasing the uptake of LDL from the extracellular environment. Since intestinal bioavailability is a key component of bioactive peptides, the second objective of this work is to evaluate the capacity of AH and PH peptides to be transported by differentiated human intestinal Caco-2 cells. The peptides transported by intestinal cells have been analyzed using mass spectrometry analysis, identifying a mixture of stable peptides that may represent new ingredients with multifunctional qualities for the development of nutraceuticals and functional foods to delay the onset of metabolic syndrome, promoting the principles of environmental sustainability.


Assuntos
Olea , Pró-Proteína Convertase 9 , Humanos , Células Hep G2 , Pró-Proteína Convertase 9/metabolismo , Células CACO-2 , Olea/química , Peptídeos/química , Colesterol/metabolismo , Sementes/química
2.
Adv Food Nutr Res ; 106: 219-239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37722773

RESUMO

Cardiovascular disease (CVD) is a major cause of deaths in industrialized countries and a constantly growing cause of morbidity and mortality worldwide Hypercholesterolemia is one of the main risk factors for CVD progression that may be prevented by lifestyle changes, including diet. This chapter will discuss the role of peptides from plants (soybean, lupin, cowpea, hempseed, and rice bran) sources with pleotropic activity for the prevention of CVD. Overall, the bioactivity that will be mainly discussed it is the hypocholesterolemic one. The very diversified structures of the hypocholesterolemic peptides so far identified explains the reason why they exert their activity through different mechanisms of action that will be extensively described in this review. Doubtlessly, their potential use in nutritional application is desirable, however, only few of them have been tested in vivo. Therefore, more efforts need to be pursued for singling out good candidates for the development of functional foods or dietary supplements.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Alimento Funcional , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Fatores de Risco
3.
Foods ; 12(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628015

RESUMO

In recent years, there has been growing interest in exploring alternative and innovative delivery systems to improve the efficacy of iron supplements, satisfying iron needs and lowering side effects. To address this issue, this study aimed at demonstrating the advantages of Ferro Supremo formulation (composed of encapsulated iron, vitamins, and micronutrients), in terms of capacity to improve iron intestinal absorption, in comparison with standard FeSO4. Hence, differentiated Caco-2 cells have been used for assessing the in vitro bioavailability and safety of FS and FeSO4. MTT experiments demonstrated that both FS and FeSO4 are not able to impair the viability of Caco-2 cells. Furthermore, the quantitative and qualitative analysis, conducted by atomic absorption spectrometry and fluorescence determinations, revealed that FS can enter, accumulate in the cytoplasm, and be transported by intestinal cells four times more efficiently than FeSO4. Our findings indicate that this formulation can be considered a valuable and efficiently good choice as food supplements for improving iron deficiency.

4.
Food Chem ; 426: 136458, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329795

RESUMO

Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.


Assuntos
Diabetes Mellitus , Inibidores da Dipeptidil Peptidase IV , Lupinus , Humanos , Animais , Camundongos , Lupinus/química , Células CACO-2 , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Peptídeos/química , Dipeptidil Peptidase 4/metabolismo , Glucose
5.
Antioxidants (Basel) ; 12(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37237964

RESUMO

Hempseed (Cannabis sativa) is one of the most promising sources of plant proteins. It contains approximately 24% (w/w) protein, and edestin accounts for approximately 60-80% (w/w) of its total proteins. In a framework of research aimed at fostering the proteins recovered from the press cake by-products generated after the extraction of hempseed oil, two hempseed protein hydrolysates (HH1 and HH2) were produced at an industrial level using a mixture of different enzymes from Aspergillus niger, Aspergillus oryzae, and Bacillus licheniformis for different times (5 h and 18 h). Using a combination of different direct antioxidant tests (DPPH, TEAC, FRAP, and ORAC assays, respectively), it has been demonstrated that HHs exert potent, direct antioxidant activity. A crucial feature of bioactive peptides is their intestinal bioavailability; for this reason, in order to solve this peculiar issue, the ability of HH peptides to be transported by differentiated human intestinal Caco-2 cells has been evaluated. Notably, by using mass spectrometry analysis (HPLC Chip ESI-MS/MS), the stable peptides transported by intestinal cells have been identified, and dedicated experiments confirmed that the trans-epithelial transported HH peptide mixtures retain their antioxidant activity, suggesting that these hempseed hydrolysates may be considered sustainable antioxidant ingredients to be exploited for further application, i.e., nutraceutical and/or food industries.

6.
Molecules ; 28(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36985747

RESUMO

Olives are very rich in phenolic compounds with important health-promoting properties. The profile and content of phenols in olive pulp and virgin olive oil are strongly influenced by the fruit ripening degree, but little is known concerning the evolution of phenolic compounds in the seed. In this work, the phenolic composition of seed from Tuscan cultivars (Frantoio, Moraiolo, Leccino) was studied over maturation. Starting from each seed sample, a phenolic extract was prepared and analyzed by HPLC-DAD-MS. Nüzhenide and nüzhenide 11-methyl oleoside were by far the most abundant phenolic compounds; their content reached up to 46 g/kg in dry seeds, although this diminished in the final stage of fruit maturation. At the same time, the phenolic composition of the pulp was also characterized over the course of maturation, showing that oleuropein was by far the most abundant compound, with concentrations comparable to those of nüzhenide and nüzhenide 11-methyl oleoside in the seeds. Overall, the total amount of phenols in seed dry extracts was significant, reaching approx. 100 g/kg. The chemically characterized dry phenolic extracts from seeds could be used for future biological assays aimed at evaluating the potential bioactivities of these phytocomplexes.


Assuntos
Frutas , Olea , Azeite de Oliva/análise , Frutas/química , Sementes/química , Olea/química , Fenóis/química , Extratos Vegetais/química
7.
Nutrients ; 15(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36839187

RESUMO

The present study aimed at characterizing the possible biological activities of the multifunctional low molecular weight fractions (<3 kDa) peptides isolated from rainbow trout (Oncorhynchus mykiss) obtained by enzymatic hydrolysis. The fish protein hydrolysate (FPH) was tested for its antioxidant property along with its angiotensin converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities. In particular, the 2,2-diphenyl-1-picrylhydrazyl (DPPH), the ferric reducing antioxidant power (FRAP), the oxygen radical absorbance capacity (ORAC) assay and the 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays were carried out for the evaluation of the in vitro antioxidant activity. The cell-free ACE and DPP-IV inhibitory activity assays were also estimated, showing a dose-dependent inhibition. These biological properties were additionally quantified at the cellular level using human intestinal Caco-2 cells. Namely, the antioxidant activity was determined by evaluating the capability of the hydrolysate to reduce the H2O2-induced reactive oxygen species (ROS) and lipid peroxidation levels, and the DPP-IV activity assays show a reduction of enzyme activity of up to 27.57 ± 3.7% at 5 mg/mL. The results indicate that Oncorhynchus mykiss-derived peptides may have potential employment as health-promoting ingredients.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Oncorhynchus mykiss , Animais , Humanos , Antioxidantes/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Peptidil Dipeptidase A , Células CACO-2 , Peróxido de Hidrogênio , Inibidores da Dipeptidil Peptidase IV/farmacologia , Peptídeos/farmacologia
8.
Food Res Int ; 163: 112219, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596148

RESUMO

This study aims to obtain a valuable mixture of short-chain peptides from hempseed as a new ingredient for developing nutraceutical and functional foods useful for preventing metabolic syndrome that represents the major cause of death globally. A dedicated analytical platform based on a purification step by size exclusion chromatography or ultrafiltration membrane and high-resolution mass spectrometry was developed to isolate and comprehensively characterize short-chain peptides leading to the identification of more than 500 short-chain peptides. Our results indicated that the short-chain peptide mixture was about three times more active than the medium-chain peptide mixture and total hydrolysate with respect to measured inhibition of the angiotensin-converting enzyme. The short-chain peptide mixture was also two times more active as a dipeptidyl peptidase IV, and twofold more active on the cholesterol metabolism pathway through the modulation of low-density lipoprotein receptor.


Assuntos
Cannabis , Síndrome Metabólica , Cannabis/química , Síndrome Metabólica/prevenção & controle , Peptídeos/química , Espectrometria de Massas , Sementes
9.
J Am Chem Soc ; 144(42): 19485-19498, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36222719

RESUMO

Optimization of peptide stability is essential for the development of peptides as bona fide alternatives to approved monoclonal antibodies. This is clearly the case for the many peptides reported to antagonize proprotein convertase subtilisin-like/kexin type 9 (PCSK9), a clinically validated target for lowering cholesterol. However, the effects of optimization of stability on in vivo activity and particularly the effects of binding to albumin, an emerging drug design paradigm, have not been studied for such peptide leads. In this study, we optimized a PCSK9 inhibitory peptide by mutagenesis and then by conjugation to a short lipidated tag to design P9-alb fusion peptides that have strong affinity to human serum albumin. Although attachment of the tag reduced activity against PCSK9, which was more evident in surface plasmon resonance binding and enzyme-linked immunosorbent competition assays than in cellular assays of activity, activity remained in the nanomolar range (∼40 nM). P9-alb peptides were exceptionally stable in human serum and had half-lives exceeding 48 h, correlating with longer half-lives in mice (40.8 min) compared to the unconjugated peptide. Furthermore, the decrease in in vitro binding was not deleterious to in vivo function, showing that engendering albumin binding improved low-density lipoprotein receptor recovery and cholesterol-lowering activity. Indeed, the peptide P9-albN2 achieved similar functional endpoints as the approved anti-PCSK9 antibody evolocumab, albeit at higher doses. Our study illustrates that optimization of stability instead of binding affinity is an effective way to improve in vivo function.


Assuntos
Anticorpos Monoclonais , Imunoadsorventes , Humanos , Camundongos , Animais , LDL-Colesterol , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Peptídeos/farmacologia , Colesterol , Albuminas , Albumina Sérica Humana , Subtilisinas , Pró-Proteína Convertase 9
10.
J Med Chem ; 65(20): 13946-13966, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36201615

RESUMO

The management of patients with type 2 diabetes mellitus (T2DM) is shifting from cardio-centric to weight-centric or, even better, adipose-centric treatments. Considering the downsides of multidrug therapies and the relevance of dipeptidyl peptidase IV (DPP IV) and carbonic anhydrases (CAs II and V) in T2DM and in the weight loss, we report a new class of multitarget ligands targeting the mentioned enzymes. We started from the known α1-AR inhibitor WB-4101, which was progressively modified through a tailored morphing strategy to optimize the potency of DPP IV and CAs while losing the adrenergic activity. The obtained compound 12 shows a satisfactory DPP IV inhibition with a good selectivity CA profile (DPP IV IC50: 0.0490 µM; CA II Ki 0.2615 µM; CA VA Ki 0.0941 µM; CA VB Ki 0.0428 µM). Furthermore, its DPP IV inhibitory activity in Caco-2 and its acceptable pre-ADME/Tox profile indicate it as a lead compound in this novel class of multitarget ligands.


Assuntos
Anidrases Carbônicas , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Dipeptidil Peptidase 4 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Células CACO-2 , Ligantes , Adrenérgicos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/farmacologia
11.
J Agric Food Chem ; 70(37): 11572-11578, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36074807

RESUMO

Food proteins are an important source of bioactive peptides, and the angiotensin I-converting enzyme (ACE) inhibitors are worthy of attention for their possible beneficial effects in subjects with mild hypertension. However, the chemical basis underpinning their activity is not well-understood, hampering the discovery of novel inhibitory sequences from the plethora of peptides encrypted in food proteins. This work combined computational and in vitro investigations to describe precisely the chemical basis of potent inhibitory tripeptides. A substantial set of previously uncharacterized tripeptides have been investigated in silico and in vitro, and LCP was described for the first time as a potent ACE inhibitory peptide with IC50 values of 8.25 and 6.95 µM in cell-free and cell-based assays, respectively. The outcomes presented could serve to better understand the chemical basis of already characterized potent inhibitory tripeptides or as a blueprint to design novel and potent inhibitory peptides and peptide-like molecules.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Peptidil Dipeptidase A , Inibidores da Enzima Conversora de Angiotensina/química , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptidil Dipeptidase A/química
12.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36139804

RESUMO

Agri-food industry wastes and by-products include highly valuable components that can upgraded, providing low-cost bioactives or used as an alternative protein source. In this context, by-products from olive production and olive oil extraction process, i.e., seeds, can be fostered. In particular, this work was aimed at extracting and characterizing proteins for Olea europaea L. seeds and at producing two protein hydrolysates using alcalase and papain, respectively. Peptidomic analysis were performed, allowing to determine both medium- and short-sized peptides and to identify their potential biological activities. Moreover, an extensive characterization of the antioxidant properties of Olea europaea L. seed hydrolysates was carried out both in vitro by 2,2-diphenyl-1-picrylhydrazyl (DPPH), by ferric reducing antioxidant power (FRAP), and by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays, respectively, and at cellular level by measuring the ability of these hydrolysates to significant reduce the H2O2-induced reactive oxygen species (ROS) and lipid peroxidation levels in human intestinal Caco-2 cells. The results of the both hydrolysates showed significant antioxidant properties by reducing the free radical scavenging activities up to 65.0 ± 0.1% for the sample hydrolyzed with alcalase and up to 75.7 ± 0.4% for the papain hydrolysates tested at 5 mg/mL, respectively. Moreover, similar values were obtained by the ABTS assays, whereas the FRAP increased up to 13,025.0 ± 241.5% for the alcalase hydrolysates and up to 12,462.5 ± 311.9% for the papain hydrolysates, both tested at 1 mg/mL. According to the in vitro results, both papain and alcalase hydrolysates restore the cellular ROS levels up 130.4 ± 4.24% and 128.5 ± 3.60%, respectively, at 0.1 mg/mL and reduce the lipid peroxidation levels up to 109.2 ± 7.95% and 73.0 ± 7.64%, respectively, at 1.0 mg/mL. In addition, results underlined that the same hydrolysates reduced the activity of dipeptidyl peptidase-IV (DPP-IV) in vitro and at cellular levels up to 42.9 ± 6.5% and 38.7 ± 7.2% at 5.0 mg/mL for alcalase and papain hydrolysates, respectively. Interestingly, they stimulate the release and stability of glucagon-like peptide 1 (GLP-1) hormone through an increase of its levels up to 660.7 ± 21.9 pM and 613.4 ± 39.1 pM for alcalase and papain hydrolysates, respectively. Based on these results, olive seed hydrolysates may represent new ingredients with antioxidant and anti-diabetic properties for the development of nutraceuticals and functional foods for the prevention of metabolic syndrome onset.

13.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955603

RESUMO

The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs' adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/ß-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3ß), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.


Assuntos
Produtos Biológicos , Doenças Ósseas , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/prevenção & controle , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligante RANK/farmacologia , Transdução de Sinais
14.
Nutrients ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745109

RESUMO

Nowadays, notwithstanding their nutritional and technological properties, food bioactive peptides from plant sources garner increasing attention for their ability to impart more than one beneficial effect on human health. Legumes, which stand out thanks to their high protein content, represent valuable sources of bioactive peptides. In this context, this study focused on the characterization of the potential pleotropic activity of two commercially available soybean (SH) and pea (PH) protein hydrolysates, respectively. Since the biological activity of a specific protein hydrolysate is strictly correlated with its chemical composition, the first aim of the study was to identify the compositions of the SH and PH peptides. Peptidomic analysis revealed that most of the identified peptides within both mixtures belong to storage proteins. Interestingly, according to the BIOPEP-UWM database, all the peptides contain more than one active motive with known inhibitory angiotensin converting enzyme (ACE) and dipeptidyl-dipeptidases (DPP)-IV sequences. Indeed, the results indicated that both SH and PH inhibit DPP-IV and ACE activity with a dose-response trend and IC50 values equal to 1.15 ± 0.004 and 1.33 ± 0.004 mg/mL, and 0.33 ± 0.01 and 0.61 ± 0.05 mg/mL, respectively. In addition, both hydrolysates reduced the activity of DPP-IV and ACE enzymes which are expressed on the surface of human intestinal Caco-2 cells. These findings clearly support that notion that SH and PH may represent new ingredients with anti-diabetic and hypotensive effects for the development of innovative multifunctional foods and/or nutraceuticals for the prevention of metabolic syndrome.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Fabaceae , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Células CACO-2 , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Humanos , Pisum sativum/metabolismo , Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Glycine max/metabolismo
15.
Nutrients ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35565772

RESUMO

Hempseed (Cannabis sativa) protein is an important source of bioactive peptides. H3 (IGFLIIWV), a transepithelial transported intestinal peptide obtained from the hydrolysis of hempseed protein with pepsin, carries out antioxidant and anti-inflammatory activities in HepG2 cells. In this study, the main aim was to assess its hypocholesterolemic effects at a cellular level and the mechanisms behind this health-promoting activity. The results showed that peptide H3 inhibited the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in vitro in a dose-dependent manner with an IC50 value of 59 µM. Furthermore, the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, followed by the increase of low-density lipoprotein (LDL) receptor (LDLR) protein levels, was observed in human hepatic HepG2 cells treated with peptide H3 at 25 µM. Meanwhile, peptide H3 regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Consequently, the augmentation of the LDLR localized on the cellular membranes led to the improved ability of HepG2 cells to uptake extracellular LDL with a positive effect on cholesterol levels. Unlike the complete hempseed hydrolysate (HP), peptide H3 can reduce the proprotein convertase subtilisin/kexin 9 (PCSK9) protein levels and its secretion in the extracellular environment via the decrease of hepatic nuclear factor 1-α (HNF1-α). Considering all these evidences, H3 may represent a new bioactive peptide to be used for the development of dietary supplements and/or peptidomimetics for cardiovascular disease (CVD) prevention.


Assuntos
Cannabis , Pró-Proteína Convertase 9 , Colesterol , Células Hep G2 , Humanos , Peptídeos/farmacologia , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
16.
Nutrients ; 14(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35276852

RESUMO

MOMAST® is a patented phenolic complex derived from the olive oil vegetation water, a by-product of the olive oil supply chain, in which hydroxytyrosol (OH-Tyr) and tyrosol (Tyr) and verbascoside are the main compounds. This study was aimed at investigating its hypocholesterolemic effect by assessing the ability to modulate the low-density lipoprotein (LDL) receptor (LDLR)/sterol regulatory element-binding protein 2 (SREBP-2), and proprotein convertase subtilisin/kexin type 9 (PCSK9) pathways. MOMAST® inhibits the in vitro activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCOAR) with a dose-response trend. After the treatment of HepG2 cells, MOMAST® increases the SREBP-2, LDLR, and HMGCoAR protein levels leading, from a functional point of view to an improved ability of hepatic cells to up-take LDL from the extracellular environment with a final cholesterol-lowering effect. Furthermore, MOMAST® decreased the PCSK9 protein levels and its secretion in the extracellular environment, presumably via the reduction of the hepatic nuclear factor 1-α (HNF1-α). The experiments were performed in parallel, using pravastatin as a reference compound. Results demonstrated that MOMAST® may be exploited as a new ingredient for the development of functional foods and/or nutraceuticals for cardiovascular disease prevention.


Assuntos
Colesterol , Pró-Proteína Convertase 9 , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Pró-Proteína Convertase 9/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
17.
Food Res Int ; 152: 110720, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35181114

RESUMO

A preceding paper has shown that a hempseed peptic hydrolysate displays a cholesterol-lowering activity with a statin-like mechanism of action in HepG2 cells and a potential hypoglycemic activity by the inhibition of dipeptidyl peptidase-IV in Caco-2 cells. In the framework of a research aimed at fostering the multifunctional behavior of hempseed peptides, we present here the identification and evaluation of some antioxidant peptides from the same hydrolysate. After evaluation of its diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, a trans-epithelial transport experiment was performed using differentiated Caco-2 cells that permitted the identification of five transported peptides that were synthesized and evaluated by measuring the oxygen radical absorbance capacity (ORAC), the ferric reducing antioxidant power (FRAP), and the 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), and diphenyl-2-picrylhydrazyl radical DPPH assays. The most active peptides, i.e. WVSPLAGRT (H2) and IGFLIIWV (H3), were then tested in cell assays. Both peptides were able to reduce the H2O2-induced reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) production levels in HepG2 cells, via the modulation of Nrf-2 and iNOS pathways, respectively.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Antioxidantes/farmacologia , Células CACO-2 , Humanos , Peroxidação de Lipídeos , Peptídeos/farmacologia
18.
Food Res Int ; 150(Pt A): 110753, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865771

RESUMO

Bioactive peptides are short peptides (3-20 amino acid residues in length) endowed of specific biological activities. The identification and characterization of bioactive peptides of food origin are crucial to better understand the physiological consequences of food, as well as to design novel foods, ingredients, supplements, and diets to counteract mild metabolic disorders. For this reason, the identification of bioactive peptides is also relevant from a pharmaceutical standpoint. Nevertheless, the systematic identification of bioactive sequences of food origin is still challenging and relies mainly on the so defined "bottom-up" approaches, which rarely results in the total identification of most active sequences. Conversely, "top-down" approaches aim at identifying bioactive sequences with certain features and may be more suitable for the precise identification of very potent bioactive peptides. In this context, this work presents a top-down, computer-assisted and hypothesis-driven identification of potent angiotensin I converting enzyme inhibitory tripeptides, as a proof of principle. A virtual library of 6840 tripeptides was screened in silico to identify potential highly potent inhibitory peptides. Then, computational results were confirmed experimentally and a very potent novel sequence, LMP was identified. LMP showed an IC50 of 15.8 and 6.8 µM in cell-free and cell-based assays, respectively. In addition, a bioinformatics approach was used to search potential food sources of LMP. Yolk proteins were identified as a possible relevant source to analyze in further experiments. Overall, the method presented may represent a powerful and versatile framework for a systematic, high-throughput and top-down identification of bioactive peptides.


Assuntos
Heurística Computacional , Peptidil Dipeptidase A , Computadores , Suplementos Nutricionais , Peptídeos
19.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771162

RESUMO

This work describes an untargeted analytical approach for the screening, identification, and characterization of the trans-epithelial transport of green tea (Camellia sinensis) catechin extracts with in vitro inhibitory effect against the SARS-CoV-2 papain-like protease (PLpro) activity. After specific catechin extraction, a chromatographic separation obtained six fractions were carried out. The fractions were assessed in vitro against the PLpro target. Fraction 5 showed the highest inhibitory activity against the SARS-CoV-2 PLpro (IC50 of 0.125 µg mL-1). The untargeted characterization revealed that (-)-epicatechin-3-gallate (ECG) was the most abundant compound in the fraction and the primary molecule absorbed by differentiated Caco-2 cells. Results indicated that fraction 5 was approximately 10 times more active than ECG (IC50 value equal to 11.62 ± 0.47 µg mL-1) to inhibit the PLpro target. Overall, our findings highlight the synergistic effects of the various components of the crude extract compared to isolated ECG.


Assuntos
Catequina/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Chá/metabolismo , Antivirais/química , COVID-19/metabolismo , Células CACO-2 , Camellia sinensis/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Espectrometria de Massas/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Chá/química , Chá/fisiologia , Tratamento Farmacológico da COVID-19
20.
Nutrients ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34579144

RESUMO

There is a renewed interest on the reliance of food-based bioactive compounds as sources of nutritive factors and health-beneficial chemical compounds. Among these food components, several proteins from foods have been shown to promote health and wellness as seen in proteins such as α/γ-conglutins from the seeds of Lupinus species (Lupin), a genus of leguminous plant that are widely used in traditional medicine for treating chronic diseases. Lupin-derived peptides (LDPs) are increasingly being explored and they have been shown to possess multifunctional health improving properties. This paper discusses the intestinal transport, bioavailability and biological activities of LDPs, focusing on molecular mechanisms of action as reported in in vitro, cell culture, animal and human studies. The potentials of several LDPs to demonstrate multitarget mechanism of regulation of glucose and lipid metabolism, chemo- and osteoprotective properties, and antioxidant and anti-inflammatory activities position LDPs as good candidates for nutraceutical development for the prevention and management of medical conditions whose etiology are multifactorial.


Assuntos
Lupinus/química , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Compostos Fitoquímicos/administração & dosagem , Proteínas de Plantas/química , Sementes/química , Animais , Anti-Inflamatórios , Antioxidantes , Disponibilidade Biológica , Promoção da Saúde , Humanos , Mucosa Intestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA