Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127979

RESUMO

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico/métodos , Genômica , Neoplasias Encefálicas/patologia
2.
ArXiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37608932

RESUMO

Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.

3.
ArXiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37396600

RESUMO

Clinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.

4.
Neuroradiology ; 65(9): 1343-1352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468750

RESUMO

PURPOSE: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas. METHODS: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed. Diagnostic performance of the partial T2-FLAIR mismatch sign was evaluated. Subset analyses were performed to assess associations of imaging markers with overall survival (OS). RESULTS: One hundred twenty-one (5.6%) of 2165 grade 4 gliomas were IDH-mutant. Partial T2-FLAIR mismatch was present in 40 (1.8%) cases, 32 of which were IDH-mutant, yielding 26.4% sensitivity, 99.6% specificity, 80.0% positive predictive value, and 95.8% negative predictive value. Multivariate logistic regression demonstrated IDH mutation was significantly associated with partial T2-FLAIR mismatch (odds ratio [OR] 5.715, 95% CI [1.896, 17.221], p = 0.002), younger age (OR 0.911 [0.895, 0.927], p < 0.001), tumor centered in frontal lobe (OR 3.842, [2.361, 6.251], p < 0.001), absence of multicentricity (OR 0.173, [0.049, 0.612], p = 0.007), and presence of cystic (OR 6.596, [3.023, 14.391], p < 0.001) or non-enhancing solid components (OR 6.069, [3.371, 10.928], p < 0.001). Multivariate Cox analysis demonstrated cystic components (p = 0.024) and non-enhancing solid components (p = 0.003) were associated with longer OS, while older age (p < 0.001), frontal lobe center (p = 0.008), multifocality (p < 0.001), and multicentricity (p < 0.001) were associated with shorter OS. CONCLUSION: Partial T2-FLAIR mismatch sign is highly specific for IDH mutation in WHO grade 4 gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética/métodos , Mutação , Organização Mundial da Saúde
5.
Neurooncol Adv ; 5(1): vdad023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152810

RESUMO

Background: IDH mutation and 1p/19q codeletion status are important prognostic markers for glioma that are currently determined using invasive procedures. Our goal was to develop artificial intelligence-based methods to noninvasively determine molecular alterations from MRI. Methods: Pre-operative MRI scans of 2648 glioma patients were collected from Washington University School of Medicine (WUSM; n = 835) and publicly available Brain Tumor Segmentation (BraTS; n = 378), LGG 1p/19q (n = 159), Ivy Glioblastoma Atlas Project (Ivy GAP; n = 41), The Cancer Genome Atlas (TCGA; n = 461), and the Erasmus Glioma Database (EGD; n = 774) datasets. A 2.5D hybrid convolutional neural network was proposed to simultaneously localize glioma and classify its molecular status by leveraging MRI imaging features and prior knowledge features from clinical records and tumor location. The models were trained on 223 and 348 cases for IDH and 1p/19q tasks, respectively, and tested on one internal (TCGA) and two external (WUSM and EGD) test sets. Results: For IDH, the best-performing model achieved areas under the receiver operating characteristic (AUROC) of 0.925, 0.874, 0.933 and areas under the precision-recall curves (AUPRC) of 0.899, 0.702, 0.853 on the internal, WUSM, and EGD test sets, respectively. For 1p/19q, the best model achieved AUROCs of 0.782, 0.754, 0.842, and AUPRCs of 0.588, 0.713, 0.782, on those three data-splits, respectively. Conclusions: The high accuracy of the model on unseen data showcases its generalization capabilities and suggests its potential to perform "virtual biopsy" for tailoring treatment planning and overall clinical management of gliomas.

6.
JCO Clin Cancer Inform ; 7: e2200177, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146265

RESUMO

PURPOSE: Efforts to use growing volumes of clinical imaging data to generate tumor evaluations continue to require significant manual data wrangling, owing to data heterogeneity. Here, we propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-oncology MRI data to extract quantitative tumor measurements. MATERIALS AND METHODS: Our end-to-end framework (1) classifies MRI sequences using an ensemble classifier, (2) preprocesses the data in a reproducible manner, (3) delineates tumor tissue subtypes using convolutional neural networks, and (4) extracts diverse radiomic features. Moreover, it is robust to missing sequences and adopts an expert-in-the-loop approach in which the segmentation results may be manually refined by radiologists. After the implementation of the framework in Docker containers, it was applied to two retrospective glioma data sets collected from the Washington University School of Medicine (WUSM; n = 384) and The University of Texas MD Anderson Cancer Center (MDA; n = 30), comprising preoperative MRI scans from patients with pathologically confirmed gliomas. RESULTS: The scan-type classifier yielded an accuracy of >99%, correctly identifying sequences from 380 of 384 and 30 of 30 sessions from the WUSM and MDA data sets, respectively. Segmentation performance was quantified using the Dice Similarity Coefficient between the predicted and expert-refined tumor masks. The mean Dice scores were 0.882 (±0.244) and 0.977 (±0.04) for whole-tumor segmentation for WUSM and MDA, respectively. CONCLUSION: This streamlined framework automatically curated, processed, and segmented raw MRI data of patients with varying grades of gliomas, enabling the curation of large-scale neuro-oncology data sets and demonstrating high potential for integration as an assistive tool in clinical practice.


Assuntos
Inteligência Artificial , Glioma , Humanos , Estudos Retrospectivos , Fluxo de Trabalho , Automação
7.
Radiol Artif Intell ; 3(5): e200301, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34617029

RESUMO

PURPOSE: To develop an algorithm to classify postcontrast T1-weighted MRI scans by tumor classes (high-grade glioma, low-grade glioma [LGG], brain metastasis, meningioma, pituitary adenoma, and acoustic neuroma) and a healthy tissue (HLTH) class. MATERIALS AND METHODS: In this retrospective study, preoperative postcontrast T1-weighted MR scans from four publicly available datasets-the Brain Tumor Image Segmentation dataset (n = 378), the LGG-1p19q dataset (n = 145), The Cancer Genome Atlas Glioblastoma Multiforme dataset (n = 141), and The Cancer Genome Atlas Low Grade Glioma dataset (n = 68)-and an internal clinical dataset (n = 1373) were used. In all, a total of 2105 images were split into a training dataset (n = 1396), an internal test set (n = 361), and an external test dataset (n = 348). A convolutional neural network was trained to classify the tumor type and to discriminate between images depicting HLTH and images depicting tumors. The performance of the model was evaluated by using cross-validation, internal testing, and external testing. Feature maps were plotted to visualize network attention. The accuracy, positive predictive value (PPV), negative predictive value, sensitivity, specificity, F1 score, area under the receiver operating characteristic curve (AUC), and area under the precision-recall curve (AUPRC) were calculated. RESULTS: On the internal test dataset, across the seven different classes, the sensitivities, PPVs, AUCs, and AUPRCs ranged from 87% to 100%, 85% to 100%, 0.98 to 1.00, and 0.91 to 1.00, respectively. On the external data, they ranged from 91% to 97%, 73% to 99%, 0.97 to 0.98, and 0.9 to 1.0, respectively. CONCLUSION: The developed model was capable of classifying postcontrast T1-weighted MRI scans of different intracranial tumor types and discriminating images depicting pathologic conditions from images depicting HLTH.Keywords MR-Imaging, CNS, Brain/Brain Stem, Diagnosis/Classification/Application Domain, Supervised Learning, Convolutional Neural Network, Deep Learning Algorithms, Machine Learning Algorithms Supplemental material is available for this article. © RSNA, 2021.

8.
Neurooncol Pract ; 7(6): 656-667, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312679

RESUMO

BACKGROUND: MRI alone has limited accuracy for delineating tumor margins and poorly predicts the aggressiveness of gliomas, especially when tumors do not enhance. This study evaluated simultaneous 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine (FDOPA)-PET/MRI to define tumor volumes compared to MRI alone more accurately, assessed its role in patient management, and correlated PET findings with histopathology. METHODS: Ten patients with known or suspected gliomas underwent standard of care surgical resection and/or stereotactic biopsy. FDOPA-PET/MRI was performed prior to surgery, allowing for precise co-registration of PET, MR, and biopsies. The biopsy sites were modeled as 5-mm spheres, and the local FDOPA uptake at each site was determined. Correlations were performed between measures of tumor histopathology, and static and dynamic PET values: standardized uptake values (SUVs), tumor to brain ratios, metabolic tumor volumes, and tracer kinetics at volumes of interest (VOIs) and biopsy sites. RESULTS: Tumor FDOPA-PET uptake was visualized in 8 patients. In 2 patients, tracer uptake was similar to normal brain reference with no histological findings of malignancy. Eight biopsy sites confirmed for glioma had FDOPA uptake without T1 contrast enhancement. The PET parameters were highly correlated only with the cell proliferation marker, Ki-67 (SUVmax: r = 0.985, P = .002). In this study, no statistically significant difference between high-grade and low-grade tumors was demonstrated. The dynamic PET analysis of VOIs and biopsy sites showed decreasing time-activity curves patterns. FDOPA-PET imaging directly influenced patient management. CONCLUSIONS: Simultaneous FDOPA-PET/MRI allowed for more accurate visualization and delineation of gliomas, enabling more appropriate patient management and simplified validation of PET findings with histopathology.

9.
PLoS One ; 15(11): e0241835, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33141861

RESUMO

BACKGROUND: To explore if early perfusion-weighted magnetic resonance imaging (PWI) may be a promising imaging biomarker to predict local recurrence (LR) of brain metastases after stereotactic radiosurgery (SRS). METHODS: This is a prospective pilot study of adult brain metastasis patients who were treated with SRS and imaged with PWI before and 1 week later. Relative cerebral blood volume (rCBV) parameter maps were calculated by normalizing to the mean value of the contralateral white matter on PWI. Cox regression was conducted to explore factors associated with time to LR, with Bonferroni adjusted p<0.0006 for multiple testing correction. LR rates were estimated with the Kaplan-Meier method and compared using the log-rank test. RESULTS: Twenty-three patients were enrolled from 2013 through 2016, with 22 evaluable lesions from 16 patients. After a median follow-up of 13.1 months (range: 3.0-53.7), 5 lesions (21%) developed LR after a median of 3.4 months (range: 2.3-5.7). On univariable analysis, larger tumor volume (HR 1.48, 95% CI 1.02-2.15, p = 0.04), lower SRS dose (HR 0.45, 95% CI 0.21-0.97, p = 0.04), and higher rCBV at week 1 (HR 1.07, 95% CI 1.003-1.14, p = 0.04) had borderline association with shorter time to LR. Tumors >2.0cm3 had significantly higher LR than if ≤2.0cm3: 54% vs 0% at 1 year, respectively, p = 0.008. A future study to confirm the association of early PWI and LR of the high-risk cohort of lesions >2.0cm3 is estimated to require 258 patients. CONCLUSIONS: PWI at week 1 after SRS may have borderline association with LR. Tumors <2.0cm3 have low risk of LR after SRS and may be low-yield for predictive biomarker studies. Information regarding sample size and potential challenges for future imaging biomarker studies may be gleaned from this pilot study.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Adulto , Idoso , Neoplasias Encefálicas/patologia , Estudos de Viabilidade , Feminino , Humanos , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Modelos de Riscos Proporcionais , Estudos Prospectivos , Radiocirurgia
10.
Neuroimage ; 220: 117081, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32603860

RESUMO

Brain extraction, or skull-stripping, is an essential pre-processing step in neuro-imaging that has a direct impact on the quality of all subsequent processing and analyses steps. It is also a key requirement in multi-institutional collaborations to comply with privacy-preserving regulations. Existing automated methods, including Deep Learning (DL) based methods that have obtained state-of-the-art results in recent years, have primarily targeted brain extraction without considering pathologically-affected brains. Accordingly, they perform sub-optimally when applied on magnetic resonance imaging (MRI) brain scans with apparent pathologies such as brain tumors. Furthermore, existing methods focus on using only T1-weighted MRI scans, even though multi-parametric MRI (mpMRI) scans are routinely acquired for patients with suspected brain tumors. In this study, we present a comprehensive performance evaluation of recent deep learning architectures for brain extraction, training models on mpMRI scans of pathologically-affected brains, with a particular focus on seeking a practically-applicable, low computational footprint approach, generalizable across multiple institutions, further facilitating collaborations. We identified a large retrospective multi-institutional dataset of n=3340 mpMRI brain tumor scans, with manually-inspected and approved gold-standard segmentations, acquired during standard clinical practice under varying acquisition protocols, both from private institutional data and public (TCIA) collections. To facilitate optimal utilization of rich mpMRI data, we further introduce and evaluate a novel ''modality-agnostic training'' technique that can be applied using any available modality, without need for model retraining. Our results indicate that the modality-agnostic approach1 obtains accurate results, providing a generic and practical tool for brain extraction on scans with brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Glioma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Bases de Dados Factuais , Aprendizado Profundo , Humanos , Estudos Retrospectivos
11.
PLoS One ; 14(11): e0225093, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725772

RESUMO

OBJECTIVES: Primary brain tumors are composed of tumor cells, neural/glial tissues, edema, and vasculature tissue. Conventional MRI has a limited ability to evaluate heterogeneous tumor pathologies. We developed a novel diffusion MRI-based method-Heterogeneity Diffusion Imaging (HDI)-to simultaneously detect and characterize multiple tumor pathologies and capillary blood perfusion using a single diffusion MRI scan. METHODS: Seven adult patients with primary brain tumors underwent standard-of-care MRI protocols and HDI protocol before planned surgical resection and/or stereotactic biopsy. Twelve tumor sampling sites were identified using a neuronavigational system and recorded for imaging data quantification. Metrics from both protocols were compared between World Health Organization (WHO) II and III tumor groups. Cerebral blood volume (CBV) derived from dynamic susceptibility contrast (DSC) perfusion imaging was also compared with the HDI-derived perfusion fraction. RESULTS: The conventional apparent diffusion coefficient did not identify differences between WHO II and III tumor groups. HDI-derived slow hindered diffusion fraction was significantly elevated in the WHO III group as compared with the WHO II group. There was a non-significantly increasing trend of HDI-derived tumor cellularity fraction in the WHO III group, and both HDI-derived perfusion fraction and DSC-derived CBV were found to be significantly higher in the WHO III group. Both HDI-derived perfusion fraction and slow hindered diffusion fraction strongly correlated with DSC-derived CBV. Neither HDI-derived cellularity fraction nor HDI-derived fast hindered diffusion fraction correlated with DSC-derived CBV. CONCLUSIONS: Conventional apparent diffusion coefficient, which measures averaged pathology properties of brain tumors, has compromised accuracy and specificity. HDI holds great promise to accurately separate and quantify the tumor cell fraction, the tumor cell packing density, edema, and capillary blood perfusion, thereby leading to an improved microenvironment characterization of primary brain tumors. Larger studies will further establish HDI's clinical value and use for facilitating biopsy planning, treatment evaluation, and noninvasive tumor grading.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Adulto , Biópsia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Glioma/patologia , Glioma/cirurgia , Humanos , Pessoa de Meia-Idade , Gradação de Tumores
12.
PLoS One ; 13(6): e0198349, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29933375

RESUMO

Functional magnetic resonance imaging (fMRI) is an important tool for pre-surgical evaluation of eloquent cortex. Classic task-based paradigms require patient participation and individual imaging sequence acquisitions for each functional domain that is being assessed. Resting state fMRI (rs-fMRI), however, enables functional localization without patient participation and can evaluate numerous functional domains with a single imaging session. To date, post-processing of this resting state data has been resource intensive, which limits its widespread application for routine clinical use. Through a novel automated algorithm and advanced imaging IT structure, we report the clinical application and the large-scale integration of rs-fMRI into routine neurosurgical practice. One hundred and ninety one consecutive patients underwent a 3T rs-fMRI, 83 of whom also underwent both motor and language task-based fMRI. Data were processed using a novel, automated, multi-layer perceptron algorithm and integrated into stereotactic navigation using a streamlined IT imaging pipeline. One hundred eighty-five studies were performed for intracranial neoplasm, 14 for refractory epilepsy and 33 for vascular malformations or other neurological disorders. Failure rate of rs-fMRI of 13% was significantly better than that for task-based fMRI (38.5%,) (p <0.001). In conclusion, at Washington University in St. Louis, rs-fMRI has become an integral part of standard imaging for neurosurgical planning. Resting state fMRI can be used in all patients, and due to its lower failure rate than task-based fMRI, it is useful for patients who are unable to cooperate with task-based studies.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso/diagnóstico por imagem , Malformações Vasculares/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Criança , Pré-Escolar , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Período Pré-Operatório , Descanso , Adulto Jovem
13.
Neuroinformatics ; 14(3): 305-17, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26910516

RESUMO

Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Atlas como Assunto , Humanos , Imagem Multimodal , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
14.
Acad Radiol ; 21(10): 1294-303, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25088833

RESUMO

RATIONALE AND OBJECTIVES: To compare quantitative imaging parameter measures from diffusion- and perfusion-weighted imaging magnetic resonance imaging (MRI) sequences in subjects with brain tumors that have been processed with different software platforms. MATERIALS AND METHODS: Scans from 20 subjects with primary brain tumors were selected from the Comprehensive Neuro-oncology Data Repository at Washington University School of Medicine (WUSM) and the Swedish Neuroscience Institute. MR images were coregistered, and each subject's data set was processed by three software packages: 1) vendor-specific scanner software, 2) research software developed at WUSM, and 3) a commercially available, Food and Drug Administration-approved, processing platform (Nordic Ice). Regions of interest (ROIs) were chosen within the brain tumor and normal nontumor tissue. The results obtained using these methods were compared. RESULTS: For diffusion parameters, including mean diffusivity and fractional anisotropy, concordance was high when comparing different processing methods. For perfusion-imaging parameters, a significant variance in cerebral blood volume, cerebral blood flow, and mean transit time (MTT) values was seen when comparing the same raw data processed using different software platforms. Correlation was better with larger ROIs (radii ≥ 5 mm). Greatest variance was observed in MTT. CONCLUSIONS: Diffusion parameter values were consistent across different software processing platforms. Perfusion parameter values were more variable and were influenced by the software used. Variation in the MTT was especially large suggesting that MTT estimation may be unreliable in tumor tissues using current MRI perfusion methods.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatologia , Circulação Cerebrovascular , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Software , Algoritmos , Velocidade do Fluxo Sanguíneo , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
15.
Neurosurgery ; 74(1): 88-98, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24089052

RESUMO

BACKGROUND: Advanced imaging methods have the potential to serve as quantitative biomarkers in neuro-oncology research. However, a lack of standardization of image acquisition, processing, and analysis limits their application in clinical research. Standardization of these methods and an organized archival platform are required to better validate and apply these markers in research settings and, ultimately, in clinical practice. OBJECTIVE: The primary objective of the Comprehensive Neuro-oncology Data Repository (CONDR) is to develop a data set for assessing and validating advanced imaging methods in patients diagnosed with brain tumors. As a secondary objective, informatics resources will be developed to facilitate the integrated collection, processing, and analysis of imaging, tissue, and clinical data in multicenter clinical trials. Finally, CONDR data and informatics resources will be shared with the research community for further analysis. METHODS: CONDR will enroll 200 patients diagnosed with primary brain tumors. Clinical, imaging, and tissue-based data are obtained from patients serially, beginning with diagnosis and continuing over the course of their treatment. The CONDR imaging protocol includes structural and functional sequences, including diffusion- and perfusion-weighted imaging. All data are managed within an XNAT-based informatics platform. Imaging markers are assessed by correlating image and spatially aligned pathological markers and a variety of clinical markers. EXPECTED OUTCOMES: CONDR will generate data for developing and validating imaging markers of primary brain tumors, including multispectral and probabilistic maps. DISCUSSION: CONDR implements a novel, open-research model that will provide the research community with both open-access data and open-source informatics resources.


Assuntos
Neoplasias Encefálicas/patologia , Informática/métodos , Neuroimagem , Sistema de Registros , Biomarcadores , Humanos , Interpretação de Imagem Assistida por Computador , Estudos Observacionais como Assunto , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA