Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunol Invest ; 52(6): 681-702, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37310728

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is the predominant chronic disorder in preterm neonates. This study explored impacts of miR-34c-5p carried by bone marrow stromal cells-secreted extracellular vesicles (BMSC-EVs) on BPD progression. METHODS: A BPD mouse model was established, followed by measurement of miR-34c-5p, OTUD3, and PTEN expression. EVs were isolated from BMSCs transfected with miR-34c-5p mimic or mimic NC and intratracheally injected into mice. CD31 and Ki67 expression was detected and the pathological changes of lung tissues and lung function indexes were observed for mice. A neonatal human pulmonary microvascular endothelial cell (HPMEC) model was developed with hyperoxia, followed by co-culture with extracted EVs and ectopic experiments for measurement of cell viability, migration, and angiogenesis. IL-4, IL-13, IL-1ß, and IL-6 levels were measured in cell supernatants and lung tissues. Dual-luciferase reporter, ubiquitination, Co-IP, and RIP assays were adopted to determine the relationship among miR-34c-5p, OTUD3, and PTEN. RESULTS: Lung tissues of BPD mice had downregulated miR-34c-5p expression and upregulated OTUD3 and PTEN expression. BMSC-EVs and BMSC-EVs-miR-34c-5p treatment improved lung injury and alveolar structure, decreased lung resistance and IL-4, IL-13, IL-1ß, and IL-6 levels, and elevated dynamic lung compliance in BPD mice, as well as enhanced proliferation, angiogenesis, and migration and restrained inflammation in HPMECs. Mechanistically, miR-34c-5p negatively targeted OTUD3 which restrained ubiquitination to promote PTEN protein stabilization. Upregulation of OTUD3 or PTEN negated the changes in the proliferation, angiogenesis, migration, and inflammation of hyperoxia-treated HPMECs induced by BMSC-EVs-miR-34c-5p. CONCLUSION: BMSC-EVs-miR-34c-5p alleviated lung injury and inflammation in hyperoxia-induced BPD by blocking the OTUD3/PTEN axis.


Assuntos
Displasia Broncopulmonar , Vesículas Extracelulares , Hiperóxia , Lesão Pulmonar , Células-Tronco Mesenquimais , MicroRNAs , Recém-Nascido , Humanos , Animais , Camundongos , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/metabolismo , Lesão Pulmonar/terapia , Lesão Pulmonar/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Interleucina-13/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Hiperóxia/metabolismo , Interleucina-4 , Interleucina-6/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA