Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 164(12)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37934803

RESUMO

Prolactin (PRL) and its receptor, PRLR, are closely related to the occurrence and development of breast cancer. hPRL-G129R, an hPRLR antagonist, has been found to induce apoptosis in breast cancer cells via mechanisms currently unknown. Recent studies have indicated that PRLR exhibits dual functions based on its membrane/nucleus localization. In that context, we speculated whether hPRL-G129R is a dual-function antagonist. We studied the internalization of the hPRLR-G129R/PRLR complex using indirect immunofluorescence and Western blot assays. We found that hPRL-G129R not only inhibited PRLR-mediated intracellular signaling at the plasma membrane, but also blocked nuclear localization of the receptor in T-47D and MCF-7 cells in a time-dependent manner. Clone formation and transwell migration assays showed that hPRL-G129R inhibited PRL-driven proliferation and migration of tumor cells in vitro. Further, we found that increasing concentrations of hPRL-G129R inhibited the nuclear localization of PRLR and the levels of signal transducer and activator of transcription (STAT) 5 in tumor-bearing mice and hPRL-G129R also exerted an antiproliferative effect in vivo. These results indicate that hPRL-G129R is indeed a dual-function antagonist. This study lays a foundation for exploring and developing highly effective agents against the proliferation and progression of breast malignancies.


Assuntos
Neoplasias da Mama , Prolactina , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/metabolismo , Proliferação de Células , Prolactina/farmacologia , Receptores da Prolactina/antagonistas & inibidores , Células Tumorais Cultivadas
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36573588

RESUMO

In vitro-cultured oocytes are separated from the follicular micro-environment in vivo and are more vulnerable than in vivo oocytes to changes in the external environment. This vulnerability disrupts the homeostasis of the intracellular environment, affecting oocyte meiotic completion, and subsequent embryonic developmental competence in vitro. Glycine, one of the main components of glutathione (GSH), plays an important role in the protection of porcine oocytes in vitro. However, the protective mechanism of glycine needs to be further clarified. Our results showed that glycine supplementation promoted cumulus cell expansion and oocyte maturation. Detection of oocyte development ability showed that glycine significantly increased the cleavage rate and blastocyst rate during in vitro fertilization (IVF). SMART-seq revealed that this effect was related to glycine-mediated regulation of cell membrane structure and function. Exogenous addition of glycine significantly increased the levels of the anti-oxidant GSH and the expression of anti-oxidant-related genes (glutathione peroxidase 4 [GPX4], catalase [CAT], superoxide dismutase 1 [SOD1], superoxide dismutase 2 [SOD2], and mitochondrial solute carrier family 25, member 39 [SLC25A39]), decreased the lipid peroxidation caused by reactive oxygen species (ROS) and reduced the level of malondialdehyde (MDA) by enhancing the functions of mitochondria, peroxisomes and lipid droplets (LDs) and the levels of lipid metabolism-related factors (peroxisome proliferator activated receptor coactivator 1 alpha [PGC-1α], peroxisome proliferator-activated receptor γ [PPARγ], sterol regulatory element binding factor 1 [SREBF1], autocrine motility factor receptor [AMFR], and ATP). These effects further reduced ferroptosis and maintained the normal structure and function of the cell membrane. Our results suggest that glycine plays an important role in oocyte maturation and later development by regulating ROS-induced lipid metabolism, thereby protecting against biomembrane damage.


Production of high-quality gametes is the premise of livestock reproduction and conservation of germplasm resources, especially high-quality oocytes, as oocyte quality determines the quality of offspring. Due to the limitations in approaches and the number of mature oocytes in vivo, in vitro maturation (IVM) culture has become an important way to obtain mature oocytes. However, IVM-cultured oocytes are separated from the follicular microenvironment in vivo and are, thus, more vulnerable than in vivo oocytes to changes in the external environment. Our study was conducted to determine if exogenous supplementation of glycine, the highest content of amino acids in oviduct fluid and follicular fluid, can improve oocyte maturation efficiency in vitro, and analyze the mechanism of glycine. This study demonstrated that glycine can maintain redox balance and block reactive oxygen species-induced lipid peroxidation, thereby protecting against biomembrane damage and reducing the occurrence of ferroptosis to maintain normal oocyte development function. This study will provide a theoretical basis for preventing and improving oxidative damage during oocyte culture in vitro.


Assuntos
Antioxidantes , Técnicas de Maturação in Vitro de Oócitos , Gravidez , Feminino , Suínos , Animais , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Antioxidantes/metabolismo , Peroxidação de Lipídeos , Glicina/farmacologia , Desenvolvimento Embrionário , Oócitos/fisiologia , Blastocisto , Glutationa/metabolismo
3.
Tissue Cell ; 79: 101963, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334324

RESUMO

Senescence is associated with a decline in physiological function, which is accompanied by onset of diseases. Growth hormone (GH) is a class of growth-promoting cytokines with reduced secretion in aging populations. However, the effect of senescence on GH bioactivity is not fully understood in human mesenchymal stem cells (hMSCs). In this work, GH-induced cellular behavior and intracellular signaling transduction were explored in senescent hMSCs. Therefore, hMSCs were used to establish a senescence model by H2O2 treatment for this study. First, we investigated the effects of cellular senescence on the cell behavior of GH. The experimental results suggested that GH could not be internalized into the nucleus, and a significant reduction in GH internalization into the cytoplasm was observed in senescent hMSCs compared to the control group. Second, the effect of cellular senescence on GH-mediated intracellular signaling pathways was investigated by Western blotting. For this, the signaling molecule activation of Janus kinase 2 (JAK2)/signal transducer and activator transcription (STAT) stimulated by GH was detected. Our data indicated that the signaling intensity of p-JAK2, p-STAT5, p-STAT3 and p-STAT1 was considerably weakened. Taken together, these findings provide important insights into the impaired effects of cellular senescence on the biological activity of GH.


Assuntos
Hormônio do Crescimento , Células-Tronco Mesenquimais , Humanos , Peróxido de Hidrogênio/farmacologia , Senescência Celular , Ciclo Celular
4.
Environ Pollut ; 309: 119756, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35839969

RESUMO

Monobutyl phthalate (MBP) is the main metabolite of dibutyl phthalate (DBP) in vivo. MBP has a stable structure, can continuously accumulate in living organisms, and has the potentially to harm animal and human reproductive function. In the ovarian follicle microenvironment, MBP may lead to defects in follicular development and steroid production, abnormal meiotic maturation, impaired ovarian function and other reproductive deficits. In this study, SMART-seq was used to investigate the effects of MBP exposure on the in vitro maturation (IVM) and development of porcine oocytes. The results showed that differentially expressed genes after MBP exposure were enriched in the biological processes cytoskeleton, cell apoptosis, endoplasmic reticulum (ER) and mitochondria. Glycine (Gly) improved the developmental potential of porcine oocytes by regulating mitochondrial and ER function. The effect of Gly in protecting oocytes against MBP-induced damage was studied. The results showed that the addition of Gly significantly decreased the rate of MBP-induced spindle abnormalities, decreased the frequency of MBP-induced mitochondria-associated ER membrane (MAM) interactions, and downregulated the protein and gene expression of the linkage molecules Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) in the MAM. Additionally, treatment with Gly restored the distribution of the 1,4,5-triphosphate receptor 1 (IP3R1) and voltage-dependent anion channel 1 (VDAC1), further decreasing the intracellular free calcium concentration ([Ca2+]i) levels and mitochondrial Ca2+ ([Ca2+]m) , increasing the ER Ca2+ ([Ca2+]ER) levels, and thus significantly increasing the ER levels and mitochondrial membrane potential (ΔΨ m). Gly also decreased the levels of reactive oxygen species (ROS) and increased the levels of Glutathione (GSH), oocyte apoptosis-related indicators (Caspase-3 activity and Annexin V) and oocyte apoptosis-related genes (BAX, Caspase 3 and AIFM1). Our results suggest that Gly can ameliorate microtubule cytoskeleton abnormalities and improve oocyte maturation by reducing the defective mitochondrial-ER interactions caused by MBP exposure in vitro.


Assuntos
Glicina , Oócitos , Animais , Apoptose , Retículo Endoplasmático , Feminino , Glutationa/metabolismo , Glicina/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Humanos , Mitocôndrias , Ácidos Ftálicos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Suínos
5.
Gen Comp Endocrinol ; 325: 114050, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561788

RESUMO

Epidermal growth factor (EGF) is an effective cytoprotective peptide. It is the main nutritional factor involved in the development of the intestinal tract. It has many important biological effects on the intestinal mucosa. After binding to epidermal growth factor receptor (EGFR), it initiates a signal transduction cascade to jointly promote the migration, proliferation, and differentiation of various cell types. Heat stress severely affects the intestinal health of livestock and is becoming increasingly prevalent due to the yearly increase in ambient temperature and intestinal diseases. However, the effect of heat stress on the activity and signaling of EGF/EGFR in intestinal cells is still unclear. Therefore, rat intestinal crypt epithelial cell line (IEC6) was used as a model to explore this issue, and the results showed that EGF/EGFR is internalized into IEC6 cells in a time-dependent manner under physiological conditions. However, the activity of EGF/EGFR was altered under heat stress. Furthermore, we explored the effect of heat stress on EGF/EGFR-activated signaling transduction in IEC6 cells, and the results showed that levels of factors involved in EGFR-mediated intracellular signaling (such as EGFR, signal transducers and activators of transcription 3/protein kinase B, and extracellular regulatory kinase 1/2) were downregulated under heat stress. In summary, this study shows that heat stress could damage the biological activity and intracellular signaling of EGF/EGFR. These findings have scientific importance in the field of animal husbandry; and lay the foundation for the further study of the biological activities of EGF/EGFR in the intestine.


Assuntos
Fator de Crescimento Epidérmico , Receptores ErbB , Animais , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Resposta ao Choque Térmico , Mucosa Intestinal/metabolismo , Fosforilação , Ratos , Transdução de Sinais
6.
Cell Stress Chaperones ; 27(3): 285-293, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35384615

RESUMO

At present, heat stress caused by the thermal environment is the main factor that endangers the reproductive function of animals. Growth hormone (GH) is a polypeptide hormone, the biological function of reproductive organs has been reported, and it has many important physiological functions in the body. However, so far, the behavior and signal transduction of GH in testicular cells under heat stress are still unclear. To this end, in the current work, we use a swine testicular cell line (ST) as an in vitro model to explore the cell behavior and intracellular signaling profile of porcine growth hormone (pGH) under heat stress; the results showed that when cells were under heat stress, pGH and GHR were basically not internalized, and a large number of them accumulated on the cell membrane. In addition, we also studied the effect of pGH on the JAK2-STATs signaling pathway and IGF-1 expression under heat stress, we found that the ability of pGH to activate the JAK-STATs signaling pathway and IGF-1 under heat stress was greatly reduced (p < 0.05). In conclusion, our research shows that when cells undergo heat stress, the internalization of pGH and GHR were inhibited, and the activation of the JAK2-STATs signaling pathway and IGF-1 expression were reduced; this lays a solid foundation for further research on the effect of pGH on swine testicular tissue under thermal environment.


Assuntos
Hormônio do Crescimento , Receptores da Somatotropina , Animais , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Resposta ao Choque Térmico , Fator de Crescimento Insulin-Like I , Receptores da Somatotropina/metabolismo , Transdução de Sinais , Suínos
7.
J Food Sci ; 86(5): 2118-2130, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33884622

RESUMO

ß-Carotene displays antioxidant and anti-inflammatory activities and prevents the development of cancer. Ulcerative colitis (UC) is a kind of inflammatory bowel disease that is accompanied by a certain risk of colon cancer. However, the role of ß-carotene in the modulation of gut microbiota and UC improvement is unclear. In this research, the properties of ß-carotene on anti-inflammatory and the composition of gut microbiota were evaluated in a rat model of UC induced by dextran sulfate sodium (DSS). The results revealed that ß-carotene significantly (p < 0.05) decreased the severity of colitis in rats, as assessed using body weight (6.00 ± 1.73%), colon length (22.23 ± 0.53%), and disease activity index, and improved the structure of the colon damaged. Moreover, colonic levels of proinflammatory cytokines were significantly lower following ß-carotene supplementation. ß-Carotene intervention also lowered the expression levels of phosphorylated p65 (0.60 ± 0.02), p38 (0.57 ± 0.00), Erk (0.63 ± 0.04), and JNK (0.70 ± 0.00). The result of the relative abundance of gut microbiota showed that DSS administration significantly changed the microbial structure at the phylum and genus levels of rats. Furthermore, ß-carotene treatment significantly increased the abundance of Faecalibacterium, the levels of which negatively correlated with the levels of inflammatory cytokines. Faecalibacterium may be a potential target in the alleviation of DSS-induced UC. ß-Carotene can alleviate DSS-induced UC through the regulation of gut microbiota. This study provides a reference for the rational use of ß-carotene in the treatment of UC. PRACTICAL APPLICATION: ß-Carotene can relieve ulcerative colitis and regulate the gut microbiota; the nutritional intervention of ß-carotene enhancing animal health.


Assuntos
Anti-Inflamatórios/farmacologia , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , beta Caroteno/farmacologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/microbiologia , Citocinas/metabolismo , Masculino , Provitaminas/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Mol Cell Endocrinol ; 390(1-2): 54-64, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24755421

RESUMO

A series of studies have reported that anti-GHR antibody can function as a GHR agonist and may serve as an attractive tool for studying the mechanisms of GHR activation. However, to date, there is relatively little information about intracellular signalling triggered by anti-GHR antibody. Therefore, in this work, we have developed a panel of monoclonal antibodies to GHBP, among which one Mab, termed CG-172, was selected for further characterisation because of its signalling properties. The results from FACS assays, receptor binding and immunoprecipitation assays and western blotting demonstrated that CG-172 specifically binds to GHR expressed on target cells. Subsequently, epitope mapping studies that used receptor binding analysis showed that CG-172 specifically binds subdomain 1 of GHR ECD. We next examined the resulting signal transduction pathways triggered by this antibody in CHO-GHR638 cells and rat hepatocytes. We found that CG-172 can activate JAK2, AKT, ERK1/2 and STAT1/3 but not STAT5. The phosphorylation kinetics of STAT1/3, AKT and ERK1/2 induced by either GH or CG-172 were analysed in dose-response and time course experiments. Our observations demonstrated that an anti-GHR monoclonal antibody (CG-172) can serve as an attractive tool to study the mechanism(s) of GHR-mediated intracellular signalling pathways and may lead to the production of signal-specific molecules that are capable of inducing different biochemical responses.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Sistema de Sinalização das MAP Quinases , Receptores da Somatotropina/agonistas , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Mapeamento de Epitopos , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hormônio do Crescimento Humano/farmacologia , Humanos , Camundongos Endogâmicos BALB C , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores da Somatotropina/imunologia , Receptores da Somatotropina/metabolismo , Fatores de Transcrição STAT/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA