Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Chromatogr A ; 1736: 465413, 2024 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-39368193

RESUMO

Protein glycosylation acts as a crucial role in regulating protein function and maintaining cellular homeostasis. Efficient peptide enrichment can be utilized to effectively solve the inherent challenges of protein glycosylation analysis to search unknown cancer biomarkers. In this research, a low dimensional porous hydrophilic nanosheets with a multi-level porous structure (Co-MOF-SiO2@HA) was synthetized via an easy one-pot method for the efficient enrichment of the N-glycopeptides in the digests of complex biosamples. The synthetized nanosheets Co-MOF-SiO2@HA demonstrated excellent enriching performances including a high enrichment capacity (300 mg g-1 calculated), a spectacular selectivity (IgG digests and BSA digests at the molar ratio of 1/1200), and an excellent spatial confinement ability (IgG digests, IgG and BSA at the molar ratio of 1/1000/1000). As an explore result, after the enrichment of human colorectal cancer tissue and human healthy tissue by the nanosheets, several proteins related to cancers and one protein directly related to well-known human colorectal cancer were identified by detecting the corresponding glycopeptides. It presented the potential value of the feasibility of this analysis mode by nanosheets Co-MOF-SiO2@HA in proteomic analysis.


Assuntos
Glicopeptídeos , Proteômica , Dióxido de Silício , Humanos , Dióxido de Silício/química , Glicopeptídeos/análise , Glicopeptídeos/química , Proteômica/métodos , Mineração de Dados , Biomarcadores Tumorais/análise , Neoplasias Colorretais , Estruturas Metalorgânicas/química , Glicosilação , Nanoestruturas/química , Imunoglobulina G/química , Porosidade , Biomarcadores/análise , Interações Hidrofóbicas e Hidrofílicas
2.
Anal Chim Acta ; 1287: 342058, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182336

RESUMO

N-glycopeptide is considered as one of significant biomarkers which provide guidance for the diagnosis and drug design of diseases. However, the direct analysis of N-glycopeptides is nearly impracticable mainly owing to their extremely low abundance and grave signal suppression from other interfering substances in the bio-samples. In this research, a multiply-mesoporous hydrophilic TiO2 nanohybrid (mM-TiO2@Cys) was synthesized by immobilizing Cys on a TiO2 substrate with hierarchical mesopores to achieve the highly-performed enrichment of N-glycopeptides. With the advantages of superior hydrophilicity and multiply-mesoporous structure, the obtained material exhibited an excellent selectivity (IgG digests and BSA digests at the molar ratio of 1/500), a high sensitivity (1 fmol µL-1 for IgG digests) and a good size-exclusion ability (IgG digests, IgG and BSA at the molar ratio of 1/500/500) in the enrichment of N-glycopeptides from IgG digests. As a result, 281 N-glycopeptides corresponded with 109 glycoproteins were identified from 2 µL serum digests of the patients with nasopharyngeal carcinoma, and 181 N-glycopeptides corresponded with 78 glycoproteins were identified from 2 µL serum digests of the healthy volunteers, revealing the potential application value of mM-TiO2@Cys in glycoproteomics.


Assuntos
Desenho de Fármacos , Glicopeptídeos , Humanos , Glicoproteínas , Imunoglobulina G
3.
J Control Release ; 367: 167-183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37562556

RESUMO

The tumor microenvironment is a barrier to breast cancer therapy. Cancer-associated fibroblast cells (CAFs) can support tumor proliferation, metastasis, and drug resistance by secreting various cytokines and growth factors. Abnormal angiogenesis provides sufficient nutrients for tumor proliferation. Considering that CAFs express the sigma receptor (which recognizes anisamide, AA), we developed a CAFs and breast cancer cells dual-targeting nano drug delivery system to transport the LightOn gene express system, a spatiotemporal controlled gene expression consisting of a light-sensitive transcription factor and a specific minimal promoter. We adopted RGD (Arg-Gly-Asp) to selectively bind to the αvß3 integrin on activated vascular endothelial cells and tumor cells. After the LightOn system has reached the tumor site, LightOn gene express system can spatiotemporal controllably express toxic Pseudomonas exotoxin An under blue light irradiation. The LightOn gene express system, combined with multifunctional nanoparticles, achieved high targeting delivery efficiency both in vitro and in vivo. It also displayed strong tumor and CAFs inhibition, anti-angiogenesis ability and anti-metastasis ability, with good safety. Moreover, it improved survival rate, survival time, and lung metastasis rate in a mouse breast cancer model. This study proves the efficacy of combining the LightOn system with targeted multifunctional nanoparticles in tumor and anti-metastatic therapy and provides new insights into tumor microenvironment regulation.


Assuntos
Nanopartículas Multifuncionais , Nanopartículas , Neoplasias , Camundongos , Animais , Células Endoteliais , Exotoxinas/genética , Exotoxinas/uso terapêutico , Regulação da Expressão Gênica , Transgenes , Linhagem Celular Tumoral , Microambiente Tumoral , Nanopartículas/uso terapêutico
4.
ACS Appl Mater Interfaces ; 15(46): 53198-53216, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942626

RESUMO

The increased risk of breast cancer metastasis is closely linked to the effects of platelets. Our previously light-switchable diphtheria toxin A fragment (DTA) gene system, known as the LightOn system, has demonstrated significant therapeutic potential; it lacks antimetastatic capabilities. In this study, we devised an innovative system by combining cell membrane fusion liposomes (CML) loaded with the light-switchable transgene DTA (pDTA) and a ticagrelor (Tig) prodrug. This innovative system, named the sequential rocket-mode bioactivating drug delivery system (pDTA-Tig@CML), aims to achieve targeted pDTA delivery while concurrently inhibiting platelet activity through the sequential release of Tig triggered by reactive oxygen species with the tumor microenvironment. In vitro investigations have indicated that pDTA-Tig@CML, with its ability to sequentially release Tig and pDTA, effectively suppresses platelet activity, resulting in improved therapeutic outcomes and the mitigation of platelet driven metastasis in breast cancer. Furthermore, pDTA-Tig@CML exhibits enhanced tumor aggregation and successfully restrains tumor growth and metastasis. It also reduces the levels of ADP, ATP, TGF-ß, and P-selectin both in vitro and in vivo, underscoring the advantages of combining the bioactivating Tig prodrug nanoplatform with the LightOn system. Consequently, pDTA-Tig@CML emerges as a promising light-switchable DTA transgene system, offering a novel bioactivating prodrug platform for breast cancer treatment.


Assuntos
Neoplasias da Mama , Pró-Fármacos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ticagrelor/farmacologia , Linhagem Celular Tumoral , Lipossomos , Transgenes , Microambiente Tumoral , Melanoma Maligno Cutâneo
5.
Int J Pharm ; 644: 123249, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37467816

RESUMO

Breast cancer, which requires comprehensive multifunctional treatment strategies, is a major threat to the health of women. To develop multifunctional treatment strategies, we combined photothermal therapy (PTT) with immunotherapy in multifunctional nanoparticles for enhancing the anti-tumor efficacy. Fe3O4 nanoparticles coated with the polydopamine shell modified with polyethylene glycol and cyclic arginine-glycyl-aspartic peptide/anisamide (tNP) for loading the immune adjuvant resiquimod (R848) (R848@tNP) were developed in this research. R848@tNP had a round-like morphology with a mean diameter of 174.7 ± 3.8 nm, the zeta potential of -20.9 ± 0.9 mV, the drug loading rate of 9.2 ± 1.1 %, the encapsulation efficiency of 81.7 ± 3.2 %, high photothermal conversion efficiency and excellent magnetic properties in vitro. Furthermore, this research also explored the anticancer efficacy of nanoparticles against the breast cancer under the near-infrared (NIR) light (808 nm) in vitro and in vivo. R848@tNP-based NIR therapy effectively inhibited the proliferation of breast cancer cells. Moreover, R848@tNP mediated PTT significantly enhanced the maturation of dendritic cells in vitro. Additionally, R848@tNP enhances the anti-tumor effect and evoked an immune response under NIR in vivo. Furthermore, the biosafety of R848@tNP was fully investigated in this study. Collectively, these results clearly demonstrate that R848@tNP, with magnetic resonance imaging characteristics, is a potential therapeutic for breast cancer that combines PTT with the immunotherapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Fototerapia , Imunoterapia
6.
Talanta ; 259: 124524, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054624

RESUMO

The development of facilely synthetic materials acts an essential role in glycoproteome analysis, especially for the highly efficient enrichment of N-linked glycopeptides. In this work, a facile and timesaving route was introduced in which COFTP-TAPT served as a carrier and poly (ethylenimine) (PEI) and carrageenan (Carr) were successively coated on the surface via electrostatic interaction. The resultant COFTP-TAPT@PEI@Carr showed remarkable performance in glycopeptide enrichment with high sensitivity (2 fmol µL-1), high selectivity (1:800, molar ratio of human serum IgG to BSA digests), large loading capacity (300 mg g-1), satisfactory recovery (102.4 ± 6.0%) and reusability (at least eight times). Due to the brilliant hydrophilicity and electrostatic interactions between COFTP-TAPT@PEI@Carr and positively charged glycopeptides, the prepared materials could be applied in the identification and analysis in the human plasma of healthy subjects and patients with nasopharyngeal carcinoma. As a result, 113 N-glycopeptides with 141 glycosylation sites corresponding to 59 proteins and 144 N-glycopeptides with 177 glycosylation sites corresponding to 67 proteins were enriched from 2 µL plasma trypsin digests of the control groups and patients with nasopharyngeal carcinoma, respectively. 22 glycopeptides were identified only from the normal controls and 53 glycopeptides were detected only from the other set. The results demonstrated that this hydrophilic material was promising on a large scale and further N-glycoproteome research.


Assuntos
Estruturas Metalorgânicas , Neoplasias Nasofaríngeas , Humanos , Glicopeptídeos/análise , Carcinoma Nasofaríngeo , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G
7.
Anal Chim Acta ; 1260: 341212, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121659

RESUMO

Adenosine, as an endogenous nucleoside modulator, plays an important role in heart rate regulation, neurotransmission, and control of the respiratory system and thus it is significantly important to realize its sensitive detection. Herein, a highly sensitive electrochemical aptasensor for adenosine detection was proposed by using multi-walled carbon nanotubes (MWCNTs) as support matrix loading PtCu nanoparticles (PtCu-MWCNTs) to amplify signal. On one hand, disposable screen-printing gold electrodes (SPGEs) were used as superb sensing base to ensure the stable connection of aptamers 1 (ssDNA1). On the other hand, the PtCu-MWCNTs complex was synthesized through a one-pot method, which not only can precisely control the proportion of metal mass in the product but also exhibited superior electrocatalytic activity towards H2O2. The recognition reactions were achieved by stepwise incubation of ssDNA1, ssDNA2-PtCu-MWCNTs (denoted as ssDNA2-label), and adenosine on the SPGEs. As a result, the constructed electrochemical aptasensor exhibited a wide linear range from 10 nM to 1.0 µM with a low detection limit of 1.0 nM (S/N = 3) for adenosine detection. The aptasensor also successfully realized the adenosine detection in human serum samples, which means that the proposed aptasensor holds a potential application in point-of-care detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Humanos , Adenosina , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro , Peróxido de Hidrogênio , Limite de Detecção , Platina/química , Cobre/química
8.
J Control Release ; 355: 538-551, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36063962

RESUMO

Individualized immunotherapy has attracted great attention due to its high specificity, effectiveness, and safety. We used an exogenous antigen to label tumor cells with MHC I molecules, which allowed neoantigen-specific T cells to recognize and kill tumor cells. A neoantigen vaccine alone cannot achieve complete tumor clearance due to a tumor immunosuppressive microenvironment. The LightOn system was developed to effectively eliminate tumor cells through the spatiotemporally controllable expression of diphtheria toxin A fragment, leading to antigen release in the tumor region. These antigens stimulated and enhanced immunological function and thus, recruited neoantigen-specific T cells to infiltrate tumor tissue. Using the nanoparticle delivery system, neoantigens produced higher delivery efficiency to lymph nodes and improved tumor targeting ability for tumor cell labelling. Good tumor inhibition and prolonged survival were achieved, while eliciting a strong immune response. The combination of a spatiotemporally controllable transgene system with tumor neoantigen labeling has great potential for tumor immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Antígenos de Neoplasias , Neoplasias/terapia , Linfócitos T , Imunoterapia , Antígenos de Histocompatibilidade Classe I , Vacinas Anticâncer/genética , Microambiente Tumoral
9.
Electrophoresis ; 43(20): 2033-2043, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856660

RESUMO

The detection of cancer biomarkers is of great significance for the early screening of cancer. Detecting the content of sarcosine in blood or urine has been considered to provide a basis for the diagnosis of prostate cancer. However, it still lacks simple, high-precision and wide-ranging sarcosine detection methods. In this work, a Ti3 C2 TX /Pt-Pd nanocomposite with high stability and excellent electrochemical performance has been synthesized by a facile one-step alcohol reduction and then used on a glassy carbon electrode (GCE) with sarcosine oxidase (SOx ) to form a sarcosine biosensor (GCE/Ti3 C2 TX /Pt-Pd/SOx ). The prominent electrocatalytic activity and biocompatibility of Ti3 C2 TX /Pt-Pd enable the SOx to be highly active and sensitive to sarcosine. Under the optimized conditions, the prepared biosensor has a wide linear detection range to sarcosine from 1 to 1000 µM with a low limit of detection of 0.16 µM (S/N = 3) and a sensitivity of 84.1 µA/mM cm2 . Besides, the reliable response in serum samples shows its potential in the early diagnosis of prostate cancer. More importantly, the successful construction and application of the amperometric biosensor based on Ti3 C2 TX /Pt-Pd will provide a meaningful reference for detecting other cancer biomarkers.


Assuntos
Técnicas Biossensoriais , Neoplasias da Próstata , Humanos , Masculino , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Carbono/química , Limite de Detecção , Neoplasias da Próstata/diagnóstico , Sarcosina , Sarcosina Oxidase/química , Titânio , Platina , Chumbo
10.
Biosens Bioelectron ; 209: 114229, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390557

RESUMO

Two-dimensional (2D) porous carbon-based composite nanosheets loaded with metal oxide nanoclusters are expected to be promising electrocatalysts for high-performance electrochemical sensors. However, for this complicated composite material, strict reaction conditions and complex synthesis steps limit its general application in electrochemical detection. Here we present a facile method to fabricate 2D mesoporous nitrogen-rich carbon nanosheets loaded with CeO2 nanoclusters (2D-mNC@CeO2), for fabricating superoxide anions (O2•-) electrochemical sensor. The method is based on block copolymers self-assembly and the affinity of polydopamine to metal ions to obtain organic-inorganic hybrid, which can be directly converted into 2D-mNC@CeO2 through carbonization strategy without structural deterioration. Characterizations demonstrate that the 2D-mNC@CeO2 owned the 2D N-doped carbon structure with an interlinked hierarchical mesoporous and the uniformly dispersed CeO2 nanoclusters on the surface. Benefitted from the unique structure, the 2D-mNC@CeO2 shortens electron transfer distance, enhances mass transfer efficiency, exposes numerous active sites, and obtain a high Ce3+/Ce4+ ratio for improving electrocatalytic performance. The 2D-mNC@CeO2/SPCEs sensors for O2•- detection has a detection limit of 0.179 µM (S/N = 3) and sensitivity of 401.4 µA cm-2 mM-1. The sensors can be applied to capture electrochemical signals of O2•- released from HepG2 cells, demonstrating the application potential of the sensors to monitor O2•- in biological fields.


Assuntos
Técnicas Biossensoriais , Cério , Técnicas Biossensoriais/métodos , Carbono/química , Cério/química , Células Hep G2 , Humanos , Nitrogênio , Superóxidos
11.
Int J Pharm ; 618: 121613, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217071

RESUMO

Breast cancer is a common malignancy in women. The abnormally dense collagen network in breast cancer forms a therapeutic barrier that hinders the penetration and anti-tumor effect of drugs. To overcome this hurdle, we adopted a therapeutic strategy to treat breast cancer which combined a light-switchable transgene system and losartan. The light-switchable transgene system could regulate expression of the diphtheria toxin A fragment (DTA) gene with a high on/off ratio under blue light and had great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system to achieve tumor microenvironment-responsive and targeted delivery of DTA-encoded plasmids (pDTA) to tumor sites via dual targeting to cluster of differentiation-44 and αvß3 receptors. In vivo studies indicated that the combination of pDTA and losartan reduce the concentration of collagen type I from 5.9 to 1.9 µg/g and decreased the level of active transforming growth factor-ß by 75.0% in tumor tissues. Moreover, deeper tumor penetration was achieved, tumor growth was inhibited, and the survival rate was increased. Our combination strategy provides a novel and practical method for clinical treatment of breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Losartan , Sistemas de Liberação de Fármacos por Nanopartículas , Transgenes , Microambiente Tumoral
12.
Artigo em Inglês | MEDLINE | ID: mdl-34840084

RESUMO

Considering the importance of glycopeptides in the clinical diagnosis of cancer and some serious diseases, the identification of glycopeptides from complex biological samples has attracted considerable attention. Effective pre-enrichment before mass spectrometry analysis plays an important role. In this work, a kind of hydrophilic two-dimensional composites (denoted as GO@MPDA@Arg) based on mesoporous polydopamine-graphene oxide were used to selectively enrich glycopeptides in biological samples. The mesoporous polydopamine (MPDA) layer self-assembled with template Pluronic F127 provided more binding sites to load arginine, and bound arginine enhanced the hydrophilicity of the material. As a result, GO@MPDA@Arg composites exhibited excellent enrichment performance for glycopeptides, containing good selectivity (IgG digests : BSA digests = 1:50, molar ratio), low detection limit for IgG digests (10 fmol µL-1), high loading capacity for IgG digests (200 µg mg-1), and good size exclusion (IgG digests : IgG : BSA = 1:100:100, mass ratio). In addition, mouse brain tissue was selected as the actual biological sample to further study the enrichment effect of GO@MPDA@Arg composites. In three parallel experiments, a total of 401 glycopeptides belonging to 233 glycoproteins were enriched from 200 µg digestion of mouse brain extract. The enrichment results demonstrate that GO@MPDA@Arg composites have application potential for glycopeptides enrichment in protein post-translational modification research.


Assuntos
Arginina/química , Cromatografia/métodos , Glicopeptídeos/análise , Glicopeptídeos/química , Eletricidade Estática , Animais , Química Encefálica , Grafite/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G/sangue , Imunoglobulina G/química , Indóis/química , Camundongos , Nanocompostos/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Polímeros/química
13.
Int J Pharm ; 609: 121125, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34560209

RESUMO

Current evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of inflammatory bowel disease (IBD). TotalROX (λabs/λem = 425/525 nm) is a ratiometric probe with high detection sensitivity and a superior capacity to monitor total cellular oxidative capacity. Herein, we investigated the potential of combining totalROX with an oral nanoparticle delivery system to detect the degree of colitis. This detection system also featured pH-responsive Eudragit S100, hyaluronic acid with high affinity to the CD44 receptor, and chitosan, and demonstrated improved loading efficiency and stability. An experimental mouse model of experimental colitis was induced by dextran sodium sulfate do that we could investigate the ability of our nanoparticles to target the colon and determine the degree of inflammation. We also determined and validated the positive correlation between the fluorescence intensity of the detection product (Ox670, λabs/λem = 650/675 nm) and myeloperoxidase activity (R2 = 0.97) and the histopathological score (R2 = 0.98). TotalROX had significant ability to measure reactive oxygen species (ROS) produced by cells under inflammatory conditions, as confirmed by in vitro experiments with Caco-2 cells. Collectively, the data generated demonstrate that when loaded with totalROX, these functional nanoparticles are promising tools for cellular imaging after oral administration. This is the first description of a ROS-responsive fluorescent probe to evaluate the degree of colitis in experimental animal models and provides a promising approach for the diagnosis of inflammation in IBD with fluorescence-guided colonoscopy.


Assuntos
Colite , Nanopartículas , Animais , Células CACO-2 , Colite/induzido quimicamente , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Corantes Fluorescentes , Humanos , Camundongos , Espécies Reativas de Oxigênio
14.
Chem Sci ; 12(27): 9500-9505, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349925

RESUMO

Current cancer therapy has been restricted by the hypoxic microenvironment of tumors, especially for strongly oxygen-dependent photodynamic therapy. To defeat tumor hypoxia, an oxygen-irrelevant radical nanogenerator, PI/FBC, is developed by the co-assembly of iodized polymer PI and NIR photosensitizer FBC, and further evaluated as a remote controllable free radical generation platform for enhancing antitumor efficiency. The PI/FBC radical nanogenerator can be excited by NIR light to produce ROS through transfer of energy to oxygen and induce the formation of toxic iodine radicals via electron transfer to PI. Notably, unlike conventional tumor treatments, such a radical nanogenerator is controllable and insusceptible to oxygen concentration. Moreover, benefiting from the strong NIR emission of FBC, the distribution of the PI/FBC radical nanogenerator can be monitored without incorporating other imaging agents. This PI/FBC radical nanogenerator treatment will no doubt broaden the family of antitumor strategies by using non-oxygen radicals, which is significant for reference in the development of promising anticancer agents.

15.
Anal Chim Acta ; 1169: 338628, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34088375

RESUMO

The detection of circulating tumor DNA (ctDNA) has increasingly received a great deal of attention considering its significance in cancer diagnosis. And the signal amplification plays an important role in the development of sensitive ctDNA biosensors. Herein, the nanocomposites (denoted as HAC-AuPt), integrating from high-active carbon (HAC) and AuPt alloy nanoparticles, were synthesized and subsequently used as a signal amplification label to fabricate a sandwich-type ctDNA electrochemical biosensor. Characterizations demonstrated that HAC presents uniform size distribution and AuPt alloy nanoparticles were successfully loaded on HAC. The current response could be amplified to a great extent by the resultant HAC-AuPt due to its excellent electrochemical property. The nanocomposites were further bounded with DNA signal probes (SPs) via Au-S or Pt-S assembly to form SPs-label. After the capture probes (CPs) were immobilized on the electrode surface, the target DNA (tDNA) and SPs-label were stepwise incubated on the CPs-modified electrode, thus forming a sandwich-type structure. By monitoring the catalytic signal of HAC-AuPt towards the reduction process of H2O2, this biosensor provided a wide linear range of 10-8 mol/L - 10-16 mol/L with a low detection limit of 3.6 × 10-17 mol/L (S/N = 3) for the detection of the tDNA. Furthermore, obvious differences in response signals among different DNAs were observed benefitting from the excellent selectivity of the biosensor. Besides, the long-term stability, reproducibility, and recovery rate were proved to be outstanding. These results indicate that the established biosensor holds a potential application in the clinical diagnosis of ctDNA.


Assuntos
Técnicas Biossensoriais , DNA Tumoral Circulante/análise , Grafite , Nanopartículas Metálicas , Ligas , Técnicas Eletroquímicas , Ouro , Peróxido de Hidrogênio , Limite de Detecção , Platina , Reprodutibilidade dos Testes
16.
Biosens Bioelectron ; 184: 113236, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33872979

RESUMO

Here we presented a new facile strategy to fabricate ultrathin two-dimensional (2D) metal oxide nanosheets, by using polydopamine-coated graphene (rGO@PDA) as a template under simply wet-chemical conditions. Based on the strategy, graphene-like CeO2-TiO2 mesoporous nanosheet (MNS-CeO2-TiO2) was prepared and was loaded with dispersive Ag nanoparticles (AgNPs) to obtain effective electrocatalysts (denoted as Ag/MNS-CeO2-TiO2) for electrochemical detection of superoxide anion (O2•-). Characterizations demonstrated that MNS-CeO2-TiO2 exhibited ultrathin thickness, larger specific surface area, and pore volume in comparison with its bulk counterpart. The above properties of MNS-CeO2-TiO2 shorten electron transmission distance, promotes mass transfer, and is conducive to the dispersion of post-modified AgNPs. Therefore, the recommended Ag/MNS-CeO2-TiO2 sensors (denoted as Ag/MNS-CeO2-TiO2/SPCE) exhibited satisfactory properties, including the sensitivity of 737.1 µA cm-2 mM-1, the detection limit of 0.0879 µM (S/N = 3), and good selectivity. Meanwhile, the sensors also successfully realized in the online monitoring of O2•- released from HepG2 cells, meaning the prepared sensors had practical application potential towards the analysis of O2•- in biological samples.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Células Hep G2 , Prata , Superóxidos , Titânio
17.
Anal Chem ; 92(23): 15663-15670, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169968

RESUMO

Protein methylation is one of the most common and important post-translational modifications, and it plays vital roles in epigenetic regulation, signal transduction, and chromatin metabolism. However, due to the diversity of methylation forms, slight difference between methylated sites and nonmodified ones, and ultralow abundance, it is extraordinarily challenging to capture and separate methylated peptides from biological samples. Here, we introduce a simple and highly efficient method to separate methylated and nonmethylated peptides using 18-crown-6 as a mobile phase additive in high-performance liquid chromatography. Selective complexation between lysine and 18-crown-6 remarkably increases the retention of the peptides on a C18 stationary phase, leading to an excellent baseline separation between the lysine methylated and nonmethylated peptides. A possible binding mechanism is verified by nuclear magnetic resonance titration, biolayer interferometry technology, and quantum chemistry calculation. Through establishment of a simple enrichment methodology, a good selectivity is achieved and four methylated peptides with greatly improved signal-to-noise (S/N) ratios are successfully separated from a complex peptide sample containing 10-fold bovine serum albumin tryptic digests. By selecting rLys N as an enzyme to digest histone, methylation information in the histone could be well identified based on our enrichment method. This study will open an avenue and provide a novel insight for selective enrichment of lysine methylated peptides in post-translational modification proteomics.


Assuntos
Éteres de Coroa/química , Lisina/química , Peptídeos/química , Peptídeos/isolamento & purificação , Animais , Bovinos , Metilação , Proteólise , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Tripsina/metabolismo
18.
Acta Pharm Sin B ; 10(9): 1741-1753, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33088693

RESUMO

A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light, and have great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system (NDDS) to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A (DTA) fragment-encoded plasmids to tumor sites. The expression of DTA was induced by exposure to blue light. Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond, and PEGylated hyaluronic acid modified with RGD peptide, accumulated in tumor tissues and were actively internalized into 4T1 cells via dual targeting to CD44 and α v ß 3 receptors. The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure. In vitro studies showed that light-induced DTA expression reduced 4T1 cell viability and induced apoptosis. Furthermore, the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4T1 tumor xenograft model, which resulted in excellent antitumor effects, reduced tumor angiogenesis, and no systemic toxicity. The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.

19.
Mikrochim Acta ; 187(10): 568, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929585

RESUMO

A selectively modified porous metal/carbon nanocomposite was fabricated to enhance the enrichment of low-abundance phosphopeptides from biological samples. The carbon matrix derived from the metal-organic framework provides a suitable pore size to allow the diffusion of peptides, while the deliberately modified metal nanoparticles within the pores enhance their interaction with the phosphopeptides. This nanocomposite shows extremely high enrichment selectivity for phosphopeptides in the MALDI-TOF MS detection, even when the molar ratio of α-casein digests versus bovine serum albumin digests was up to about 1:20,000. By combining such nanocomposite with nano-LC-MS/MS, 4556 unique phosphopeptides were identified with high selectivity (95.2%) from HeLa cell extracts. Furthermore, phosphopeptides from prostate tissue digests were also determined. A total of 277 and 1242 phosphopeptides were identified from normal and tumor tissues of a patient with prostate cancer, respectively. This indicates that phosphorylation and prostate cancer can be related to each other.


Assuntos
Estruturas Metalorgânicas/química , Nanocompostos/química , Espectrometria de Massas em Tandem/métodos , Titânio/química , Humanos
20.
Chem Commun (Camb) ; 56(16): 2415-2418, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31994584
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA