Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473912

RESUMO

Bulbophyllum is one of the largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae, including species of ornamental and medical importance. The lack of knowledge regarding the characterization of Bulbophyllum chloroplast (cp) genomes has imposed current limitations on our study. Here, we report the complete cp genomes of seven Bulbophyllum species, including B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste, and B. violaceolabellum, and compared with related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. A total of 28 Bulbophyllum cp genomes exhibit typical quadripartite structures with lengths ranging from 145,092 bp to 165,812 bp and a GC content of 36.60% to 38.04%. Each genome contained 125-132 genes, encompassing 74-86 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The genome arrangements, gene contents, and length were similar, with differences observed in ndh gene composition. It is worth noting that there were exogenous fragment insertions in the IR regions of B. crassipes. A total of 18-49 long repeats and 38-80 simple sequence repeats (SSRs) were detected and the single nucleotide (A/T) was dominant in Bulbophyllum cp genomes, with an obvious A/T preference. An analysis of relative synonymous codon usage (RSCU) revealed that leucine (Leu) was the most frequently used codon, while cysteine (Cys) was the least used. Six highly variable regions (rpl32-trnLUAG > trnTUGU-trnLUAA > trnFGAA-ndhJ > rps15-ycf1 > rbcL-accD > psbI-trnSGCU) and five coding sequences (ycf1 > rps12 > matK > psbK > rps15) were identified as potential DNA markers based on nucleotide diversity. Additionally, 31,641 molecular diagnostic characters (MDCs) were identified in complete cp genomes. A phylogenetic analysis based on the complete cp genome sequences and 68 protein-coding genes strongly supported that 28 Bulbophyllum species can be divided into four branches, sects. Brachyantha, Cirrhopetalum, and Leopardinae, defined by morphology, were non-monophyly. Our results enriched the genetic resources of Bulbophyllum, providing valuable information to illustrate the complicated taxonomy, phylogeny, and evolution process of the genus.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Filogenia , Orchidaceae/genética , Evolução Molecular , Nucleotídeos
2.
Plant Mol Biol ; 113(4-5): 193-204, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37878187

RESUMO

Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium, this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium. The experimental results showed that CeF3'H2, CeDFR, CeANS, CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium. The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis. These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium.


Assuntos
Flavanonas , Orchidaceae , Antocianinas , Transcriptoma , Flavonoides/metabolismo , Flores/genética , Flores/metabolismo , Flavonóis , Orchidaceae/genética , Orchidaceae/metabolismo , Flavanonas/metabolismo , Cor , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762622

RESUMO

The TCP gene family are plant-specific transcription factors that play important roles in plant growth and development. Dendrobium chrysotoxum, D. nobile, and D. huoshanense are orchids with a high ornamental value, but few studies have investigated the specific functions of TCPs in Dendrobium flower development. In this study, we used these three Dendrobium species to analyze TCPs, examining their physicochemical properties, phylogenetic relationships, gene structures, and expression profiles. A total of 50 TCPs were identified across three Dendrobium species; they were divided into two clades-Class-I (PCF subfamily) and Class-II (CIN and CYC/TB1 subfamilies)-based on their phylogenetic relationships. Our sequence logo analysis showed that almost all Dendrobium TCPs contain a conserved TCP domain, as well as the existence of fewer exons, and the cis-regulatory elements of the TCPs were mostly related to light response. In addition, our transcriptomic data and qRT-PCR results showed that DchTCP2 and DchTCP13 had a significant impact on lateral organs. Moreover, changes in the expression level of DchTCP4 suggested its important role in the phenotypic variation of floral organs. Therefore, this study provides a significant reference for the further exploration of TCP gene functions in the regulation of different floral organs in Dendrobium orchids.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Filogenia , Fatores de Transcrição/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
4.
Genes (Basel) ; 15(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254910

RESUMO

Luisia, a genus of the subtribe Aeridinae of Orchidaceae, comprises ca. 40 species. Members of Luisia exhibit unique morphological characteristics and represent a valuable ornamental orchid genus. However, due to the scarcity of distinct morphological characters, species identification within this genus is ambiguous and controversial. In the present study, next-generation sequencing (NGS) methods were used to assemble the plastomes of five Luisia species and compare them with one publicly available Luisia plastid genome data. The plastomes of Luisia possessed a quadripartite structure, with sizes ranging from 146,243 bp to 147,430 bp. The plastomes of six Luisia species contained a total of 120 genes, comprising 74 protein-coding genes, 38 tRNA genes and eight rRNA genes. Notably, all ndh genes were pseudogenized or lost. An analysis of codon usage bias showed that leucine (Leu) exhibited the highest frequency, while cysteine (Cys) exhibited the lowest frequency. A total of 57 to 64 SSRs and 42 to 49 long repeats were identified. Five regions and five coding sequences were identified for DNA barcodes, based on the nucleotide diversity (Pi) analysis. The species of Luisia constituted a monophyletic group and were sister to Paraphalaenopsis with strong support. Our study deepens the understanding of species identification, plastome evolution and the phylogenetic positions of Luisia.


Assuntos
Orchidaceae , Orchidaceae/genética , Filogenia , Uso do Códon , Cisteína , Éxons
5.
Front Plant Sci ; 13: 1068969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570938

RESUMO

TCP gene family are specific transcription factors for plant, and considered to play an important role in development and growth. However, few related studies investigated the TCP gene trait and how it plays a role in growth and development of Orchidaceae. In this study, we obtained 14 TCP genes (CgTCPs) from the Spring Orchid Cymbidium goeringii genome. The classification results showed that 14 CgTCPs were mainly divided into two clades as follows: four PCF genes (Class I), nine CIN genes and one CYC gene (Class II). The sequence analysis showed that the TCP proteins of C. goeringii contain four conserved regions (basic Helix-Loop-Helix) in the TCP domain. The exon-intron structure varied in the clade according to a comparative investigation of the gene structure, and some genes had no introns. There are fewer CgTCP homologous gene pairs compared with Dendrobium catenatum and Phalaenopsis equestris, suggesting that the TCP genes in C. goeringii suffered more loss events. The majority of the cis-elements revealed to be enriched in the function of light responsiveness, followed by MeJA and ABA responsiveness, demonstrating their functions in regulating by light and phytohormones. The collinearity study revealed that the TCPs in D. catenatum, P. equestris and C. goeringii almost 1:1. The transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) expression profiles showed that the flower-specific expression of the TCP class II genes (CgCIN2, CgCIN5 and CgCIN6) may be related to the regulation of florescence. Altogether, this study provides a comprehensive analysis uncovering the underlying function of TCP genes in Orchidaceae.

6.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743113

RESUMO

Sacred lotus (Nelumbo nucifera) is an aquatic perennial plant with essential food, ornamental, and pharmacological value. Growth-regulating factor (GRF) is a transcription factor (TF) family that plays an important role in regulating the growth and development of plants. In this study, a comprehensive analysis of the GRF family in N. nucifera was performed, and its role in N. nucifera development was studied. A total of eight GRF genes were identified in the N. nucifera genome. Phylogenetic analysis divided the 38 GRF genes into six clades, while the NuGRFs only contained five clades. The analyses of gene structures, motifs, and cis-acting regulatory elements of the GRF gene family were performed. In addition, the chromosome location and collinearity were analyzed. The expression pattern based on transcriptomic data and real-time reverse transcription-quantitative PCR (qRT-PCR) revealed that the GRF genes were expressed in multiple organs and were abundant in actively growing tissues, and the expression levels decreased as the age of N. nucifera increased. Then, 3D structures of the NuGRF proteins were predicted by homology modeling. Finally, the subcellular localization of GRF1 was ascertained in the tobacco leaf through a vector. Therefore, this study provides a comprehensive overview of the GRF TF family in N. nucifera.


Assuntos
Nelumbo , Nelumbo/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
7.
J Genet Genomics ; 49(2): 120-131, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34757038

RESUMO

Melastomataceae has abundant morphological diversity with high economic and ornamental merit in Myrtales. The phylogenetic position of Myrtales is still contested. Here, we report the chromosome-level genome assembly of Melastoma dodecandrum in Melastomataceae. The assembled genome size is 299.81 Mb with a contig N50 value of 3.00 Mb. Genome evolution analysis indicated that M. dodecandrum, Eucalyptus grandis, and Punica granatum were clustered into a clade of Myrtales and formed a sister group with the ancestor of fabids and malvids. We found that M. dodecandrum experienced four whole-genome polyploidization events: the ancient event was shared with most eudicots, one event was shared with Myrtales, and the other two events were unique to M. dodecandrum. Moreover, we identified MADS-box genes and found that the AP1-like genes expanded, and AP3-like genes might have undergone subfunctionalization. The SUAR63-like genes and AG-like genes showed different expression patterns in stamens, which may be associated with heteranthery. In addition, we found that LAZY1-like genes were involved in the negative regulation of stem branching development, which may be related to its creeping features. Our study sheds new light on the evolution of Melastomataceae and Myrtales, which provides a comprehensive genetic resource for future research.


Assuntos
Melastomataceae , Myrtales , Evolução Molecular , Genoma de Planta/genética , Filogenia
8.
Commun Biol ; 4(1): 671, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083720

RESUMO

Wolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Lycium/genética , Solanaceae/genética , Sequenciamento Completo do Genoma/métodos , África , Ásia , Evolução Molecular , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Geografia , Lycium/classificação , Lycium/metabolismo , América do Norte , Filogenia , Poliploidia , Polissacarídeos/metabolismo , Solanaceae/classificação , Solanaceae/metabolismo , Especificidade da Espécie
9.
Mol Phylogenet Evol ; 77: 216-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24747128

RESUMO

The taxonomy of the Calanthe alliance (Epidendroideae, Orchidaceae), consisting of Calanthe, Cephalantheropsis, and Phaius, has been difficult for orchidologists to understand because of the presence of common morphological features. In this study, in addition to morphological and geographical analyses, maximum parsimony and Bayesian inference analyses were performed based on nucleotide sequences of the nuclear internal transcribed spacer and cpDNA genes of 88 taxa representing the major clades of the Calanthe alliance in China. The results indicated that Cephalantheropsis is monophyletic, while both Phaius and Calanthe are polyphyletic. In Phaius, a total of three species, P. flavus, P. columnaris, and P. takeoi, were segregated to form a new genus, Paraphaius. In Calanthe, subgenus Preptanthe and sect. Styloglossum were both categorized as distinct genera from Calanthe. Our results also confirm that Calanthe delavayi and C. calanthoides are members of Calanthe. Previous studies assigned C. delavayi to Phaius and C. calanthoides to Ghiesbrechtia. Five sections, namely, Alpinocalanthe, Puberula, Ghiesbrechtia, Tricarinata, and Calanthe, three of which are new taxa, were recognized in Calanthe. Therefore, we propose that the Calanthe alliance is composed of six genera: Calanthe, Cephalantheropsis, Paraphaius, Phaius, Preptanthe and Styloglossum.


Assuntos
Orchidaceae/genética , Filogenia , Teorema de Bayes , China , DNA de Plantas/genética , Orchidaceae/anatomia & histologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA