Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474401

RESUMO

Fabry disease (FD) is an X-linked recessive inheritance lysosomal storage disorder caused by pathogenic mutations in the GLA gene leading to a deficiency of the enzyme alpha-galactosidase A (α-Gal A). Multiple organ systems are implicated in FD, most notably the kidney, heart, and central nervous system. In our previous study, we identified four GLA mutations from four independent Fabry disease families with kidney disease or neuropathic pain: c.119C>A (p.P40H), c.280T>C (C94R), c.680G>C (p.R227P) and c.801+1G>A (p.L268fsX3). To reveal the molecular mechanism underlying the predisposition to Fabry disease caused by GLA mutations, we analyzed the effects of these four GLA mutations on the protein structure of α-galactosidase A using bioinformatics methods. The results showed that these mutations have a significant impact on the internal dynamics and structures of GLA, and all these altered amino acids are close to the enzyme activity center and lead to significantly reduced enzyme activity. Furthermore, these mutations led to the accumulation of autophagosomes and impairment of autophagy in the cells, which may in turn negatively regulate autophagy by slightly increasing the phosphorylation of mTOR. Moreover, the overexpression of these GLA mutants promoted the expression of lysosome-associated membrane protein 2 (LAMP2), resulting in an increased number of lysosomes. Our study reveals the pathogenesis of these four GLA mutations in FD and provides a scientific foundation for accurate diagnosis and precise medical intervention for FD.


Assuntos
Autofagia , Doença de Fabry , alfa-Galactosidase , Humanos , alfa-Galactosidase/genética , Autofagia/genética , Doença de Fabry/genética , Lisossomos/metabolismo , Mutação
2.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216193

RESUMO

Small patella syndrome (SPS) is a rare autosomal dominant disorder caused by mutations in TBX4 gene which encodes a transcription factor of FGF10. However, how TBX4 mutations result in SPS is poorly understood. Here, a novel TBX4 mutation c.1241C>T (p.P414L) was identified in a SPS family and series of studies were performed to evaluate the influences of TBX4 mutations (including c.1241C>T and two known mutations c.256G>C and c.743G>T). Results showed that mesenchymal stem cells (MSCs) with stable overexpression of either TBX4 wild-type (TBX4wt) or mutants (TBX4mt) were successfully generated. Immunofluorescence study revealed that both the overexpressed TBX4 wild-type and mutants were evenly expressed in the nucleus suggesting that these mutations do not alter the translocation of TBX4 into the nucleus. Interestingly, MSCs overexpression of TBX4mt exhibited reduced differentiation activities and decreased FGF10 expression. Chromatin immunoprecipitation (ChIP) study demonstrated that TBX4 mutants still could bind to the promoter of FGF10. However, dual luciferase reporter assay clarified that the binding efficiencies of TBX4 mutants to FGF10 promoter were reduced. Taken together, MSCs were firstly used to study the function of TBX4 mutations in this study and the results indicate that the reduced binding efficiencies of TBX4 mutants (TBX4mt) to the promoter of FGF10 result in the abnormal biological processes which provide important information for the pathogenesis of SPS.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Quadril/anormalidades , Ísquio/anormalidades , Mutação/genética , Patela/anormalidades , Proteínas com Domínio T/genética , Adulto , Doenças do Desenvolvimento Ósseo/patologia , Linhagem Celular , Feminino , Células HEK293 , Quadril/patologia , Humanos , Ísquio/patologia , Células-Tronco Mesenquimais/patologia , Patela/patologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Adulto Jovem
3.
Eur J Med Chem ; 85: 487-97, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25113877

RESUMO

A series of novel 1-hydroxyl-3-aminoalkoxy xanthone derivatives were designed, synthesized and evaluated for in vitro anticancer activity against four selected human cancer cell lines (nasopharyngeal neoplasm CNE, liver cancer BEL-7402, gastric cancer MGC-803, lung adenocarcinoma A549). Most of the synthesized compounds exhibit effective cytotoxic activity against the four tested cancer cell lines with the IC50 values at micromolar concentration level. Some preliminary structure-activity relationships were also discussed. In this series of derivatives, compound 3g shows excellent broad spectrum anticancer activity with IC50 values ranging from 3.57 to 20.07 µM. The in vitro anticancer activity effect and action mechanism of compound 3g on human gastric carcinoma MGC-803 cell were further investigated. The results showed that compound 3g exhibits dose- and time-dependent anticancer effects on MGC-803 cells through apoptosis, which might be associated with its decreasing intracellular calcium and the mitochondrial membrane potential.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Xantonas/síntese química , Xantonas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Relação Estrutura-Atividade , Xantonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA