RESUMO
BACKGROUND: Although the efficacy of botulinum toxin type A (BoNT-A) has been shown to vary depending on injection layer, reconstitution volumes, and BoNT-A formulations, the impact of injection patterns has been rarely mentioned. This article compared the therapeutic effects in patients treated with BoNT-A with retrograde linear and traditional spot injection techniques. METHODS: Twenty-eight participants were enrolled in a split-face, patient-blinded randomized clinical trial. Each patient received BoNT-A injected with linear injection technique on one side and with spot injection technique on the other side. Outcomes included the wrinkle improvement rates (WIR) of the two injection techniques determined by the wrinkle scores derived from Antera 3D camera, the muscle activity assessed via ultrasound, and patient-reported pain rating on a numeric pain rating scale (NRS). RESULTS: All participants completed the study. For forehead wrinkles, WIR on the linear side was significantly larger than that on the spot side at 1 week and 1 month (p<0.02). For glabellar wrinkles, WIR on the linear injection side was significantly larger than that on the spot side at 1 week (p=0.04). However, for periorbital wrinkles, WIR on the spot side was significantly larger than that on the linear side at 1 week (p<0.03). No significant difference was observed between the injection patterns in terms of muscle contraction and NRS scores. CONCLUSIONS: Compared with the traditional spot injection, the retrograde linear injection shows to be superior in reducing forehead lines and glabellar lines, but less effective in reducing periorbital lines when identical dosages were injected. TRIAL REGISTRATION: chictr.org.cn: ChiCTR2100046880.
RESUMO
Long-term alcohol intake may cause nerve cell apoptosis and induce various encephalopathies. Previously, we have shown that the expression of Na+/Ca2+ exchanger 3 (NCX3) was associated with the intracellular calcium concentration ([Ca2+]i) and apoptosis, involved in the spatial memory impairment in male C57BL/6 mice with chronic ethanol (EtOH) exposure. However, the mechanism involved is unclear. Here, we investigated the expression of NCX3 and its protective effect on SK-N-SH cells (a nerve cell line) after EtOH exposure. [Ca2+]i was measured using Fluo-3 AM reagent. Cell viability and the apoptotic rate were assayed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) and flow cytometry, respectively. The expression of p-cAMP-responsive element binding protein1(p-CREB 1), NCX3 protein, and mRNA were observed using Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Cleaved-caspase-3, caspase-3, rabbit anti- poly (ADP-ribose) polymerase-1 (PARP-1) and calpain-1 proteins were used to assess the degree of apoptosis. Our results showed that EtOH increased [Ca2+]i and apoptosis of SK-N-SH cells in a concentration- and time-dependent manner. The expression of NCX3 protein and mRNA was up regulated obviously after SK-N-SH cells were treated with EtOH. The phosphorylation levels of Akt and CREB 1 were up regulated in cells treated with EtOH. The expression of NCX3 protein was reduced in the SK-N-SH cells treated with Akt phosphorylation inhibitor (LY294002). The [Ca2+]i and apoptosis rate of SK-N-SH cells increased 1.31-fold and 1.52-fold after silencing NCX3 compared with those treated with 200 mM EtOH alone for 2 d. In contrast, the [Ca2+]i and apoptosis rate of SK-N-SH cells decreased 0.26-fold and 0.35-fold after overexpression of NCX3 in the 2 d-200 mM EtOH treatment group. These results suggest that NCX3 plays a critical role in neuronal protection via the elimination of intracellular Ca2+, which may be a promising target for the prevention and treatment of encephalopathy after ethanol exposure.
Assuntos
Cálcio/metabolismo , Etanol/toxicidade , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Proteína Oncogênica v-akt/metabolismoRESUMO
Chronic alcoholism has become a major public health problem. Long-term and excessive drinking can lead to a variety of diseases. Chronic ethanol exposure can induce neuroinflammation and anxiety-like behavior, and this may be induced through the Toll-like receptor 3/nuclear factor-κB (TLR3/NF-κB) pathway. Animal experiments were performed using healthy adult male C57BL/6 N mice given 10 % (m/V) or 20 % ethanol solution as the only choice of drinkable fluid for 60, 90 or 180 d. In cell culture experiments, H4 human glioma cells were treated with 100 mM ethanol for 2 d, with the TLR3 gene silenced by RNAi and NF-κB inhibited by ammonium pyrrolidine dithiocarbamate (PDTC, 10 µM). After treatment with ethanol solution for a specific time, the anxiety-like behavior of the mice was tested using the open field test and the elevated plus maze test. Western blotting was used to detect the expression of TLR3, TLR4, NF-κB, IL-1ß, IL-6, and TNF-α in the mouse hippocampus and H4 cells. The expression of IL-1ß, IL-6 and TNF-α in the supernatant of cell culture medium was detected by ELISA. The open field test showed a decrease in time spent in the central area, and the elevated plus maze test showed a decrease in activity time in the open arm region. These behavioral tests indicated that ethanol caused anxiety-like behavior in mice. The expression levels of TLR3, TLR4, NF-κB, IL-1ß, IL-6, and TNF-α increased after ethanol exposure in both the hippocampus of mice and H4 cells. Silencing of the TLR3 gene by RNAi or inhibition of NF-κB by PDTC attenuated the ethanol-induced increase in the expression of inflammatory factors in H4 cells. These findings indicated that chronic ethanol exposure increases the expression of TLR3 and NF-κB and produces neuroinflammation and anxiety-like behavior in male C57BL/6 mice and that ethanol-induced neuroinflammation can be caused through the TLR3/NF-κB pathway.