Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 186: 114519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369053

RESUMO

N-Nitrosodiethylamine (NDEA), a carcinogen in some foods and medications, is linked to liver damage similar to non-alcoholic fatty liver disease (NAFLD). This study explores how NDEA disrupts liver lipid metabolism. Sprague-Dawley rats were given two doses of NDEA (100 mg/kg) orally, 24 h apart. Liver response was assessed through tissue staining, blood tests, and biochemical markers, including fatty acids, lipid peroxidation, and serum very-low density lipoprotein (VLDL) levels. Additionally, lipidomic analysis of liver tissues and serum was performed. The results indicated significant hepatic steatosis (fat accumulation in the liver) following NDEA exposure. Blood analysis showed signs of inflammation and liver damage. Biochemical tests revealed decreased liver protein synthesis and specific enzyme alterations, suggesting liver cell injury but maintaining mitochondrial function. Increased fatty acid levels without a rise in lipid peroxidation were observed, indicating fat accumulation. Lipidomic analysis showed increased polyunsaturated triglycerides in the liver and decreased serum VLDL, implicating impaired VLDL transport in liver dysfunction. In conclusion, NDEA exposure disrupts liver lipid metabolism, primarily through the accumulation of polyunsaturated triglycerides and impaired fat transport. These findings provide insight into the mechanisms of NDEA-induced liver injury and its progression to hepatic steatosis.


Assuntos
Dietilnitrosamina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Triglicerídeos/metabolismo , Dietilnitrosamina/toxicidade , Lipoproteínas VLDL/metabolismo , Ratos Sprague-Dawley , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Dieta Hiperlipídica
2.
Toxicol Lett ; 387: 76-83, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769858

RESUMO

Trichloroethylene (TCE) was a widely used industrial solvent, and now has become a major environmental pollutant. Exposure to TCE has been found to result in significant damage to the liver, leading to hepatic toxicity. In our previous study, we discovered that a histone chaperon called SET plays a crucial role in mediating the DNA damage and apoptosis caused by TCE in hepatic cells. However, the precise function of SET in the response to DNA damage is still not fully understood. In this study, we evaluated TCE-induced DNA damage of hepatic L-02 cells with SET-knockdown, then analyzed alterations of H3K79me3 and p53 in hepatic cells and carcinogenic mice livers. Results suggested that SET interferes with DNA response via mediating down-regulation of p53 and partially suppressing H3K79me3 under treatment of TCE. To further verify the regulatory cascade, H3K79me3 was reduced and p53 was knocked down in L-02 cells respectively, and extent of DNA damage was evaluated. Reduced H3K79me3 was found leading to down-regulation of p53 which further exacerbated TCE-induced DNA injury. These findings demonstrated that SET-H3K79me3-p53 served as an epigenetic regulatory axis involved in TCE-induced DNA damage response.


Assuntos
Dano ao DNA , Epigênese Genética , Tricloroetileno , Proteína Supressora de Tumor p53 , Animais , Camundongos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Tricloroetileno/toxicidade , Proteína Supressora de Tumor p53/genética , Dano ao DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA