Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 48(7): 964-972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459259

RESUMO

BACKGROUND/OBJECTIVES: Proinflammatory cytokines are increased in obese adipose tissue, including inflammasome key masters. Conversely, IL-18 protects against obesity and metabolic dysfunction. We focused on the IL-18 effect in controlling adipose tissue remodeling and metabolism. MATERIALS/SUBJECTS AND METHODS: We used C57BL/6 wild-type (WT) and interleukine-18 deficient (IL-18-/-) male mice fed a chow diet and samples from bariatric surgery patients. RESULTS: IL-18-/- mice showed increased adiposity and proinflammatory cytokine levels in adipose tissue, leading to glucose intolerance. IL-18 was widely secreted by stromal vascular fraction but not adipocytes from mice's fatty tissue. Chimeric model experiments indicated that IL-18 controls adipose tissue expansion through its presence in tissues other than bone marrow. However, IL-18 maintains glucose homeostasis when present in bone marrow cells. In humans with obesity, IL-18 expression in omental tissue was not correlated with BMI or body fat mass but negatively correlated with IRS1, GLUT-4, adiponectin, and PPARy expression. Also, the IL-18RAP receptor was negatively correlated with IL-18 expression. CONCLUSIONS: IL-18 signaling may control adipose tissue expansion and glucose metabolism, as its absence leads to spontaneous obesity and glucose intolerance in mice. We suggest that resistance to IL-18 signaling may be linked with worse glucose metabolism in humans with obesity.


Assuntos
Tecido Adiposo , Interleucina-18 , Camundongos Endogâmicos C57BL , Obesidade , Animais , Interleucina-18/metabolismo , Camundongos , Masculino , Tecido Adiposo/metabolismo , Humanos , Obesidade/metabolismo , Intolerância à Glucose/metabolismo , Modelos Animais de Doenças , Camundongos Knockout
2.
Nutrition ; 50: 1-7, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510322

RESUMO

OBJECTIVES: Tumor necrosis factor (TNF) is a well-known cytokine that triggers insulin resistance during obesity development. On the other hand, it is also known that TNF induces a fat mass loss during acute diseases. However, whether TNF has a protective and physiological role to control adipose tissue expansion during obesity still needs to be verified. The aim of this study was to evaluate whether the ablation of TNF receptor 1 (TNFR1) alters fat mass and insulin resistance induced by a highly refined carbohydrate-containing (HC) diet. METHODS: Male C57 BL/6 wild-type (WT) mice and TNFR1 knockout (TNFR1-/-) mice were fed with chow or with the HC diet for 16 wk. RESULTS: TNFR1-/- mice gained more body weight than the WT groups independent of the diet composition. TNFR1-/- mice fed with the chow diet showed higher adiposity, accompanied by higher serum leptin levels. However, these mice showed lower non-esterified fatty acid levels. Furthermore, TNFR1-/- mice had suppressed TNF, interleukin (IL)-6, and IL-10 levels in adipose tissue compared with WT mice. TNFR1-/- mice fed with the HC diet were protected from increased adiposity and glucose intolerance induced by the HC diet and exhibited lower serum resistin levels. CONCLUSIONS: TNF signaling appears to have a paradoxical role on metabolism. Ablation of TNFR1 leads to a reduction of inflammatory cytokines in adipose tissue that is accompanied by higher adiposity in mice fed with chow diet. However, when these mice are given the HC diet, the loss of TNFR1 improves insulin sensitivity and protects mice against additional fat mass.


Assuntos
Tecido Adiposo/metabolismo , Dieta/efeitos adversos , Obesidade/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Carboidratos da Dieta/metabolismo , Modelos Animais de Doenças , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Resistência à Insulina/fisiologia , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Resistina/sangue
3.
Appl Physiol Nutr Metab ; 41(12): 1295-1302, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27863204

RESUMO

The inflammation induced by obesogenic diets is associated with deposition of fat in the liver. On the other hand, anti-inflammatory and immunosuppressive therapies may impact in body fat storage and in liver lipid dynamics. It is important to study specific inflammatory mediators in this context, since their role on hepatic damage is not fully clarified. This study aimed to evaluate the role of interleukin (IL)-18 and tumor necrosis factor (TNF) receptor in liver dysfunction induced by diet. Male C57BL/6 wild-type (WT), IL-18, and TNF receptor 1 knockout mice (IL-18-/- and TNFR1-/-) were divided according to the experimental diets: chow diet or a high-refined carbohydrate-containing diet. Alanine aminotransferase was quantified by colorimetric analysis. Total fat content in the liver was determined by Folch methods. Levels of TNF, IL-6, IL-4, and IL-13 in liver samples were measured by ELISA assay. IL-18 and TNFR knockout mice fed with chow diet showed higher liver triglycerides deposition than WT mice fed with the same diet (WT: 131.9 ± 24.5; IL-18-/-: 239.4 ± 38.12*; TNF-/-: 179.6 ± 50.45*; *P < 0.01). Furthermore, these animals also showed a worse liver histopathological score and lower levels of TNF, IL-6, IL-4, and IL-13 in the liver. Interestingly, treatment with a high-carbohydrate diet did not exacerbate liver damage in IL-18-/- and TNFR1-/- mice. Our data suggest that IL-18 and TNF may be involved on hepatic homeostasis mainly in a context of a healthy diet.


Assuntos
Interleucina-18/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Colágeno/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Manipulação de Alimentos , Inflamassomos/metabolismo , Interleucina-13/metabolismo , Interleucina-18/genética , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Fígado/imunologia , Fígado/patologia , Fígado/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA