Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 40(40): 5781-5790, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36055874

RESUMO

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 µg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 µg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 µg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adjuvantes Imunológicos/efeitos adversos , Adulto , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários
2.
J Control Release ; 275: 12-19, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29432824

RESUMO

Aluminum salts have been used as vaccine adjuvants for >50 years, and they are currently present in at least 146 licensed vaccines worldwide. In this study we examined whether adsorption of Army Liposome Formulation (ALF) to an aluminum salt that already has an antigen adsorbed to it might result in improved immune potency of the aluminum-adsorbed antigen. ALF is composed of a family of anionic liposome-based adjuvants, in which the liposomes contain synthetic phospholipids having dimyristoyl fatty acyl groups, cholesterol and monophosphoryl lipid A (MPLA). For certain candidate vaccines, ALF has been added to aluminum hydroxide (AH) gel as a second adjuvant to form ALFA. Here we show that different methods of preparation of ALF changed the physical structures of both ALF and ALFA. Liposomes containing the saponin QS21 (ALFQ) have also been mixed with AH to form ALFQA as an effective combination. In this study, we first adsorbed one of two different antigens to AH, either tetanus toxoid conjugated to 34 copies of a hapten (MorHap), which has been used in a candidate heroin vaccine, or gp140 protein derived from the envelope protein of HIV-1. We then co-adsorbed ALF or ALFQ to the AH to form ALFA or ALFQA. In each case, the immune potency of the antigen adsorbed to AH was greatly increased by co-adsorbing either ALF or ALFQ to the AH. Based on IgG subtype and cytokine analysis by ELISPOT, ALFA induced predominately a Th2-type response and ALFQ and ALFQA each induced more balanced Th1/Th2 responses.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Antígenos , Saponinas , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Adsorção , Hidróxido de Alumínio/administração & dosagem , Hidróxido de Alumínio/química , Hidróxido de Alumínio/imunologia , Animais , Antígenos/administração & dosagem , Antígenos/química , Antígenos/imunologia , Feminino , Haptenos/administração & dosagem , Haptenos/química , Haptenos/imunologia , Imunoglobulina G/imunologia , Lipossomos , Camundongos Endogâmicos BALB C , Saponinas/administração & dosagem , Saponinas/química , Saponinas/imunologia , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/química , Toxoide Tetânico/imunologia , Vacinas/administração & dosagem , Vacinas/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
3.
Vaccine ; 34(23): 2546-55, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27087149

RESUMO

Based on Plasmodium falciparum (Pf) apical membrane antigen 1 (AMA1) from strain 3D7, the malaria vaccine candidate FMP2.1/AS02A showed strain-specific efficacy in a Phase 2 clinical trial in 400 Malian children randomized to 3 doses of the AMA1 vaccine candidate or control rabies vaccine on days 0, 30 and 60. A subset of 10 Pf(-) (i.e., no clinical malaria episodes) AMA1 recipients, 11 Pf(+) (clinical malaria episodes with parasites with 3D7 or Fab9-type AMA1 cluster 1 loop [c1L]) AMA1 recipients, and 10 controls were randomly chosen for analysis. Peripheral blood mononuclear cells (PBMCs) isolated on days 0, 90 and 150 were stimulated with full-length 3D7 AMA1 and c1L from strains 3D7 (c3D7) and Fab9 (cFab9). Production of IFN-γ, TNF-α, IL-2, and/or IL-17A was analyzed by flow cytometry. Among AMA1 recipients, 18/21 evaluable samples stimulated with AMA1 demonstrated increased IFN-γ, TNF-α, and IL-2 derived from CD4(+) T cells by day 150 compared to 0/10 in the control group (p<0.0001). Among AMA1 vaccines, CD4(+) cells expressing both TNF-α and IL-2 were increased in Pf(-) children compared to Pf(+) children. When PBMCs were stimulated with c3D7 and cFab9 separately, 4/18 AMA1 recipients with an AMA1-specific CD4(+) response had a significant response to one or both c1L. This suggests that recognition of the AMA1 antigen is not dependent upon c1L alone. In summary, AMA1-specific T cell responses were notably increased in children immunized with an AMA1-based vaccine candidate. The role of CD4(+)TNF-α(+)IL-2(+)-expressing T cells in vaccine-induced strain-specific protection against clinical malaria requires further exploration. Clinicaltrials.gov Identifier: NCT00460525.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Humanos , Imunização Secundária , Lactente , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucina-2/imunologia , Mali , Plasmodium falciparum , Fator de Necrose Tumoral alfa/imunologia
4.
Vaccine ; 32(26): 3243-8, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24736000

RESUMO

We created and produced a novel self-assembling nanoparticle platform for delivery of peptide epitopes that induces CD8(+) and CD4(+)T cells that are protective against Toxoplasma gondii infection. These self-assembling polypeptide nanoparticles (SAPNs) are composed of linear peptide (LP) monomers which contain two coiled-coil oligomerization domains, the dense granule 7 (GRA720-28 LPQFATAAT) peptide and a universal CD4(+)T cell epitope (derived from PADRE). Purified LPs assemble into nanoparticles with icosahedral symmetry, similar to the capsids of small viruses. These particles were evaluated for their efficacy in eliciting IFN-γ by splenocytes of HLA-B*0702 transgenic mice and for their ability to protect against subsequent T. gondii challenge. This work demonstrates the feasibility of using this platform approach with a CD8(+) epitope that binds HLA-B7 and tests the biological activity of potentially protective peptides restricted by human major histocompatibility complex (HLA) class I molecules in HLA transgenic mice.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Nanopartículas/administração & dosagem , Vacinas Protozoárias/imunologia , Toxoplasmose/prevenção & controle , Animais , Epitopos de Linfócito T/imunologia , Feminino , Antígeno HLA-B7 , Interferon gama/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Peptídeos/imunologia , Baço/imunologia , Toxoplasma , Vacinas de Subunidades Antigênicas/imunologia
5.
Hum Vaccin Immunother ; 8(11): 1564-84, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23151451

RESUMO

When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997-1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000-2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 µg of each plasmid plus escalating doses (0, 20, 100 or 500 µg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines.


Assuntos
Antígenos de Protozoários/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Esporozoítos/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico , Adulto , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Vacinas Antimaláricas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Plasmídeos/genética , Vacinas de DNA/efeitos adversos , Adulto Jovem
6.
Nat Med ; 16(11): 1333-40, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21037588

RESUMO

Immunodominance is defined as restricted responsiveness of T cells to a few selected epitopes from complex antigens. Strategies currently used for elucidating CD4(+) T cell epitopes are inadequate. To understand the mechanism of epitope selection for helper T cells, we established a cell-free antigen processing system composed of defined proteins: human leukocyte antigen-DR1 (HLA-DR1), HLA-DM and cathepsins. Our reductionist system successfully identified the physiologically selected immunodominant epitopes of two model antigens: hemagglutinin-1 (HA1) from influenza virus (A/Texas/1/77) and type II collagen (CII). When applied for identification of new epitopes from a recombinant liver-stage antigen of malaria falciparum (LSA-NRC) or HA1 from H5N1 influenza virus ('avian flu'), the system selected single epitopes from each protein that were confirmed to be immunodominant by their capacity to activate CD4(+) T cells from H5N1-immunized HLA-DR1-transgenic mice and LSA-NRC-vaccinated HLA-DR1-positive human volunteers. Thus, we provide a new tool for the identification of physiologically relevant helper T cell epitopes from antigens.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Epitopos Imunodominantes/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/imunologia , Catepsina B/metabolismo , Sistema Livre de Células , Colágeno Tipo II/química , Colágeno Tipo II/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígeno HLA-DR1/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Antígenos de Histocompatibilidade Classe II/química , Humanos , Epitopos Imunodominantes/química , Virus da Influenza A Subtipo H5N1/imunologia , Malária/imunologia , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Reprodutibilidade dos Testes
7.
Infect Agent Cancer ; 5: 13, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20667138

RESUMO

BACKGROUND: Endemic Burkitt's lymphoma (BL) is an extranodal tumor appearing predominantly in the jaw in younger children while abdominal tumors predominate with increasing age. Previous studies have identified elevated levels of antibodies to Plasmodium falciparum schizont extracts and Epstein-Barr virus (EBV) viral capsid antigens (VCA) in endemic BL relative to malaria exposed controls. However, these studies have neither determined if there were any differences based on the site of clinical presentation of the tumor nor examined a broader panel of EBV and P. falciparum antigens. METHODS: We used a suspension bead Luminex assay to measure the IgG levels against EBV antigens, VCA, EAd, EBNA-1 and Zta as well as P. falciparum MSP-1, LSA-1, and AMA-1 antigens in children with BL (n = 32) and in population-based age-and sex-matched controls (n = 25) from a malaria endemic region in Western Kenya with high incidence of BL. EBV viral load in plasma was determined by quantitative PCR. RESULTS: Relative to healthy controls, BL patients had significantly increased anti-Zta (p = 0.0017) and VCA IgG levels (p < 0.0001) and plasma EBV viral loads (p < 0.0001). In contrast, comparable IgG levels to all P. falciparum antigens tested were observed in BL patients compared to controls. Interestingly, when we grouped BL patients into those presenting with abdominal tumors or with jaw tumors, we observed significantly higher levels of anti-Zta IgG levels (p < 0.0065) and plasma EBV viral loads (p < 0.033) in patients with abdominal tumors compared to patients with jaw tumors. CONCLUSION: Elevated antibodies to Zta and elevated plasma EBV viral load could be relevant biomarkers for BL and could also be used to confirm BL presenting in the abdominal region.

8.
J Immunol ; 183(11): 7268-77, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19915055

RESUMO

We have designed and produced a prototypic malaria vaccine based on a highly versatile self-assembling polypeptide nanoparticle (SAPN) platform that can repetitively display antigenic epitopes. We used this platform to display a tandem repeat of the B cell immunodominant repeat epitope (DPPPPNPN)(2)D of the malaria parasite Plasmodium berghei circumsporozoite protein. Administered in saline, without the need for a heterologous adjuvant, the SAPN construct P4c-Mal conferred a long-lived, protective immune response to mice with a broad range of genetically distinct immune backgrounds including the H-2(b), H-2(d), and H-2(k) alleles. Immunized mice produced a CD4(+) T cell-dependent, high-titer, long-lasting, high-avidity Ab response against the B cell epitope. Mice were protected against an initial challenge of parasites up to 6 mo after the last immunization or for up to 15 mo against a second challenge after an initial challenge of parasites had successfully been cleared. Furthermore, we demonstrate that the SAPN platform not only functions to deliver an ordered repetitive array of B cell peptide epitopes but operates as a classical immunological carrier to provide cognate help to the P4c-Mal-specific B cells.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos de Linfócito B/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos , Ensaio de Imunoadsorção Enzimática , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Malária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmodium berghei/imunologia
9.
Infect Immun ; 76(4): 1709-18, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18212075

RESUMO

Prime-boost vaccination regimens with heterologous antigen delivery systems have indicated that redirection of the immune response is feasible. We showed earlier that T-cell responses to circumsporozoite (CS) protein improved significantly when the protein is primed with recombinant adenovirus serotype 35 coding for CS (rAd35.CS). The current study was designed to answer the question whether such an effect can be extended to liver-stage antigens (LSA) of Plasmodium falciparum such as LSA-1. Studies with mice have demonstrated that the LSA-1 protein induces strong antibody response but a weak T-cell immunity. We first identified T-cell epitopes in LSA-1 by use of intracellular gamma interferon (IFN-gamma) staining and confirmed these epitopes by means of enzyme-linked immunospot assay and pentamer staining. We show that a single immunization with rAd35.LSA-1 induced a strong antigen-specific IFN-gamma CD8(+) T-cell response but no measurable antibody response. In contrast, vaccinations with the adjuvanted recombinant LSA-1 protein induced remarkably low cellular responses but strong antibody responses. Finally, both priming and boosting of the adjuvanted protein by rAd35 resulted in enhanced T-cell responses without impairing the level of antibody responses induced by the protein immunizations alone. Furthermore, the incorporation of rAd35 in the vaccination schedule led to a skewing of LSA-1-specific antibody responses toward a Th1-type immune response. Our results show the ability of rAd35 to induce potent T-cell immunity in combination with protein in a prime-boost schedule without impairing the B-cell response.


Assuntos
Adenoviridae , Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Imunização Secundária , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/metabolismo , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/química , Relação Dose-Resposta Imunológica , Mapeamento de Epitopos , Epitopos de Linfócito T , Feminino , Malária Falciparum/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium falciparum/química , Vacinas Sintéticas/imunologia
10.
Vaccine ; 25(21): 4203-12, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17442466

RESUMO

We report the first safety and immunogenicity trial of the Plasmodium falciparum vaccine candidate FMP2.1/AS02A, a recombinant E. coli-expressed protein based upon the apical membrane antigen-1 (AMA-1) of the 3D7 clone formulated with the AS02A adjuvant. We conducted an open-label, staggered-start, dose-escalating Phase I trial in 23 malaria-naïve volunteers who received 8, 20 or 40microg of FMP2.1 in a fixed volume of 0.5mL of AS02A on a 0, 1, and 2 month schedule. Nineteen of 23 volunteers received all three scheduled immunizations. The most frequent solicited local and systemic adverse events associated with immunization were injection site pain (68%) and headache (29%). There were no significant laboratory abnormalities or vaccine-related serious adverse events. All volunteers seroconverted after second immunization as determined by ELISA. Immune sera recognized sporozoites and merozoites by immunofluorescence assay (IFA), and exhibited both growth inhibition and processing inhibition activity against homologous (3D7) asexual stage parasites. Post-immunization, peripheral blood mononuculear cells exhibited FMP2.1-specific lymphoproliferation and IFN-gamma and IL-5 ELISPOT assay responses. This is the first PfAMA-1-based vaccine shown to elicit both potent humoral and cellular immunity in humans. Encouraged by the potential of FMP1/AS02A to target host immunity against PfAMA-1 that is known to be expressed by sporozoite, hepatic and erythrocytic stages, we have initiated field trials of FMP2.1/AS02A in an endemic population in the Republic of Mali.


Assuntos
Antígenos de Protozoários/imunologia , Lipídeo A/análogos & derivados , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Saponinas/imunologia , Adjuvantes Imunológicos , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/sangue , Linhagem Celular , Proliferação de Células , Células Cultivadas , Cricetinae , Combinação de Medicamentos , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Cefaleia , Humanos , Imunização Secundária , Interferon gama/biossíntese , Interleucina-5/biossíntese , Leucócitos Mononucleares/imunologia , Lipídeo A/imunologia , Vacinas Antimaláricas/administração & dosagem , Masculino , Merozoítos/imunologia , Mesocricetus , Pessoa de Meia-Idade , Dor , Plasmodium falciparum/crescimento & desenvolvimento , Esporozoítos/imunologia , Vacinas Sintéticas/imunologia
11.
Indian J Biochem Biophys ; 44(6): 429-36, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18320841

RESUMO

Plasmodium vivax is one of the most widely distributed human malaria parasites and due to drug-resistant strains, its incidence and prevalence has increased, thus an effective vaccine against the parasites is urgently needed. One of the major constraints in developing P. vivax vaccine is the lack of suitable in vivo models for testing the protective efficacy of the vaccine. P. vivax and P. cynomolgi bastianelli are the two closely related malaria parasites and share a similar clinical course of infection in their respective hosts. The merozoite surface protein-1 (MSP-1) of these parasites has found to be protective in a wide range of host-parasite systems. P. vivax MSP-1 is synthesized as 200 kDa polypeptide and processed just prior to merozoite release from the erythrocytes into smaller fragments. The C- terminal 42 kDa cleavage product of MSP-1 (MSP-1(42)) is present on the surface of merozoites and a major candidate for blood stage malaria vaccine. In the present study, we have biochemically and immunologically characterized the soluble and refolded 42 kDa fragment of MSP-1 of P. vivax (PvMSP-1(42)) and P. cynomolgi B (PcMSP-1(42)). SDS-PAGE analysis showed that both soluble and refolded E. coli expressed P. vivax and P. cynomolgi B MSP-1(42) proteins were homogenous in nature. The soluble and refolded MSP-1(42) antigens of both parasites showed high reactivity with protective monkey sera and conformation-specific monoclonal antibodies against P. cynomolgi B and P. vivax MSP-1(42) antigens. Immunization of BALB/c mice with these antigens resulted in the production of high titres of cross-reactive antibodies primarily against the conformational epitopes of MSP-1(42) protein. The immune sera from rhesus monkeys. immunized with soluble and refolded MSP-1(42) antigens of both parasites also showed high titered cross-reactive antibodies against MSP-1(42) conformational epitopes. These results suggested that the soluble and refolded forms of E. coli expressed P. vivax MSP-1(42) antigens were highly immunogenic and thus a viable candidate for vaccine studies.


Assuntos
Escherichia coli/metabolismo , Proteína 1 de Superfície de Merozoito/imunologia , Proteína 1 de Superfície de Merozoito/metabolismo , Parasitemia/imunologia , Plasmodium cynomolgi/imunologia , Plasmodium vivax/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Haplorrinos , Imunização , Técnicas In Vitro , Proteína 1 de Superfície de Merozoito/química , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/metabolismo , Parasitemia/patologia , Dobramento de Proteína , Estrutura Terciária de Proteína
12.
Vaccine ; 23(17-18): 2243-50, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15755604

RESUMO

The goal of the Malaria Vaccine Program at the Walter Reed Army Institute of Research (WRAIR) is to develop a licensed multi-antigen, multi-stage vaccine against Plasmodium falciparum able to prevent all symptomatic manifestations of malaria by preventing parasitemia. A secondary goal is to limit disease in vaccinees that do develop malaria. Malaria prevention will be achieved by inducing humoral and cellular immunity against the pre-erythrocytic circumsporozoite protein (CSP) and the liver stage antigen-1 (LSA-1). The strategy to limit disease will target immune responses against one or more blood stage antigens, merozoite surface protein-1 (MSP-1) and apical merozoite antigen-1 (AMA-1). The induction of T- and B-cell memory to achieve a sustained vaccine response may additionally require immunization with an adenovirus vector such as adenovirus serotype 35. RTS,S, a CSP-derived antigen developed by GlaxoSmithKline Biologicals in collaboration with the Walter Reed Army Institute of Research over the past 17 years, is the cornerstone of our program. RTS,S formulated in AS02A (a GSK proprietary formulation) is the only vaccine candidate shown in field trials to prevent malaria and, in one instance, to limit disease severity. Our vaccine development plan requires proof of an individual antigen's efficacy in a Phase 2 laboratory challenge or field trial prior to its integration into an RTS,S-based, multi-antigen vaccine. Progress has been accelerated through extensive partnerships with industrial, academic, governmental, and non-governmental organizations. Recent safety, immunogenicity, and efficacy trials in the US and Africa are presented, as well as plans for the development of a multi-antigen vaccine.


Assuntos
Vacinas Antimaláricas/isolamento & purificação , Plasmodium falciparum/imunologia , Academias e Institutos , Adenoviridae/genética , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/isolamento & purificação , Ensaios Clínicos como Assunto , Vetores Genéticos , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/farmacologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/genética , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Estados Unidos
13.
J Infect Dis ; 188(3): 449-57, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12870128

RESUMO

We studied the impact of Plasmodium falciparum on nutritional status in a longitudinal cohort of 147 young men in western Kenya, where malaria transmission is intense and perennial. All volunteers received treatment to eradicate parasitemia and then provided weekly blood smears during a 16-week transmission season. We measured body mass index (BMI), pubertal development, frequency and density of parasitemia, and tumor necrosis factor (TNF)-alpha production by peripheral blood mononuclear cells. During early puberty, mean parasite density had a strong negative effect on the natural increase in BMI. Among older individuals, TNF-alpha production in response to malarial antigen predicted a significantly lower BMI (P<.03), equal to 4.6 kg for a man of average height. Our data indicate that burden of parasitemia has a detrimental effect on the nutritional status of early adolescents and that malaria may continue to influence nutritional status among older adolescents and adults via host elaboration of proinflammatory cytokines. These effects of malaria may have pervasive health and socioeconomic consequences in areas where malaria is endemic.


Assuntos
Malária Falciparum/complicações , Distúrbios Nutricionais/etiologia , Plasmodium falciparum , Adolescente , Adulto , Animais , Índice de Massa Corporal , Estudos de Coortes , Humanos , Quênia/epidemiologia , Leucócitos Mononucleares/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Masculino , Análise Multivariada , Distúrbios Nutricionais/epidemiologia , Estado Nutricional , Parasitemia , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Puberdade , Fator de Necrose Tumoral alfa/análise
14.
Infect Immun ; 70(6): 3101-10, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12011004

RESUMO

The apical membrane antigen 1 (AMA1) has emerged as a promising vaccine candidate against malaria. Advanced evaluation of its protective efficacy in humans requires the production of highly purified and correctly folded protein. We describe here a process for the expression, fermentation, refolding, and purification of the recombinant ectodomain of AMA1 (amino acids 83(Gly) to 531(Glu)) of Plasmodium falciparum (3D7) produced in Escherichia coli. A synthetic gene containing an E. coli codon bias was cloned into a modified pET32 plasmid, and the recombinant protein was produced by using a redox-modified E. coli strain, Origami (DE3). A purification process was developed that included Sarkosyl extraction followed by affinity purification on a Ni-nitrilotriacetic acid column. The recombinant AMA1 was refolded in the presence of reduced and oxidized glutathione and further purified by using two ion-exchange chromatographic steps. The final product, designated AMA1/E, was homogeneous, monomeric, and >99% pure and had low endotoxin content and low host cell contamination. Analysis of AMA1/E showed that it had the predicted primary sequence, and tertiary structure analysis confirmed its compact disulfide-bonded nature. Rabbit antibodies made to the protein recognized the native parasite AMA1 and inhibited the growth of the P. falciparum homologous 3D7 clone in an in vitro assay. Reduction-sensitive epitopes on AMA1/E were shown to be necessary for the production of inhibitory anti-AMA1 antibodies. AMA1/E was recognized by a conformation-dependent, growth-inhibitory monoclonal antibody, 4G2dc1. The process described here was successfully scaled up to produce AMA1/E protein under GMP conditions, and the product was found to induce highly inhibitory antibodies in rabbits.


Assuntos
Antígenos de Protozoários/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Dobramento de Proteína , Proteínas de Protozoários/imunologia , Sarcosina/análogos & derivados , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/biossíntese , Antígenos de Protozoários/genética , Antígenos de Protozoários/isolamento & purificação , Cromatografia de Afinidade/métodos , Cromatografia por Troca Iônica/métodos , Cisteína , Ácido Edético , Endotoxinas , Escherichia coli , Fermentação , Expressão Gênica , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Níquel , Plasmodium falciparum/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Coelhos , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA