Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Br J Pharmacol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812293

RESUMO

BACKGROUND AND PURPOSE: Nonalcoholic fatty liver disease refers to liver pathologies, ranging from steatosis to steatohepatitis, with fibrosis ultimately leading to cirrhosis and hepatocellular carcinoma. Although several mechanisms have been suggested, including insulin resistance, oxidative stress, and inflammation, its pathophysiology remains imperfectly understood. Over the last decade, a dysfunctional unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress emerged as one of the multiple driving factors. In parallel, growing evidence suggests that insulin-degrading enzyme (IDE), a highly conserved and ubiquitously expressed metallo-endopeptidase originally discovered for its role in insulin decay, may regulate ER stress and UPR. EXPERIMENTAL APPROACH: We investigated, by genetic and pharmacological approaches, in vitro and in vivo, whether IDE modulates ER stress-induced UPR and lipid accumulation in the liver. KEY RESULTS: We found that IDE-deficient mice display higher hepatic triglyceride content along with higher inositol-requiring enzyme 1 (IRE1) pathway activation. Upon induction of ER stress by tunicamycin or palmitate in vitro or in vivo, pharmacological inhibition of IDE, using its inhibitor BDM44768, mainly exacerbated ER stress-induced IRE1 activation and promoted lipid accumulation in hepatocytes, effects that were abolished by the IRE1 inhibitors 4µ8c and KIRA6. Finally, we identified that IDE knockout promotes lipolysis in adipose tissue and increases hepatic CD36 expression, which may contribute to steatosis. CONCLUSION AND IMPLICATIONS: These results unravel a novel role for IDE in the regulation of ER stress and development of hepatic steatosis. These findings pave the way to innovative strategies modulating IDE to treat metabolic diseases.

2.
Clin Exp Rheumatol ; 41(9): 1875-1881, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37279145

RESUMO

OBJECTIVES: To evaluate whether inflammatory and complement biomarkers are associated with specific characteristics of antiphospholipid syndrome (APS). METHODS: Serum levels of interleukin (IL)-1ß (IL-1ß), IL-6, IL-8, IL-10, tumour necrosis factor (TNF)-α, interferon-α (IFN)-α, IFN-γ, vascular endothelial growth factor (VEGF), intercellular adhesion molecule 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule (VCAM)-1, and plasma levels of soluble C5b-9 (sC5b-9), C3a, C4a, Bb fragment were measured in unselected APS patients. Twenty-five healthy blood donors were included as controls. RESULTS: Between January 2020 and April 2021, 98 APS patients were included outside acute thrombosis (median time from the last APS manifestation: 60 (23;132) months). Levels of IL6, VCAM-1, sC5b-9, C3a, C4a, and Bb were significantly increased in APS patients compared to controls. A cluster analysis allowed to divide patients into two clusters: "inflammatory" (higher levels of IL-6 and VCAM-1) and "complement". In APS, elevated IL-6 was associated with hypertension, diabetes, BMI, and hypertriglyceridaemia. 85% of our APS patients had elevated levels of at least one complement biomarker. Elevated Bb (34%) was associated with aPL positivities, especially with triple aPL positivity (50% vs. 18%, p<0.001). 7/8 patients with history of catastrophic APS had elevated levels of complement biomarkers. CONCLUSIONS: Our findings suggested that APS patients outside acute thrombosis might be divided into two clusters: "inflammatory" and "complement". Elevated IL-6 was associated with cardiovascular risk factors and metabolic parameters, whereas Bb fragments, a marker of alternative pathway complement activation, was strongly associated with aPL profile at highest risk of severe disease.


Assuntos
Síndrome Antifosfolipídica , Trombose , Humanos , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/diagnóstico , Molécula 1 de Adesão de Célula Vascular/metabolismo , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular , Ativação do Complemento , Trombose/etiologia , Trombose/complicações , Proteínas do Sistema Complemento , Biomarcadores
3.
Kidney Int ; 104(2): 353-366, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164260

RESUMO

The complement system plays a key role in the pathophysiology of kidney thrombotic microangiopathies (TMA), as illustrated by atypical hemolytic uremic syndrome. But complement abnormalities are not the only drivers of TMA lesions. Among other potential pathophysiological actors, we hypothesized that alteration of heparan sulfate (HS) in the endothelial glycocalyx could be important. To evaluate this, we analyzed clinical and histological features of kidney biopsies from a monocentric, retrospective cohort of 72 patients with TMA, particularly for HS integrity and markers of local complement activation. The role of heme (a major product of hemolysis) as an HS-degrading agent in vitro, and the impact of altering endothelial cell (ECs) HS on their ability to locally activate complement were studied. Compared with a positive control, glomerular HS staining was lower in 57 (79%) patients with TMA, moderately reduced in 20 (28%), and strongly reduced in 37 (51%) of these 57 cases. Strongly reduced HS density was significantly associated with both hemolysis at the time of biopsy and local complement activation (C3 and/or C5b-9 deposits). Using primary endothelial cells (HUVECs, Glomerular ECs), we observed decreased HS expression after short-term exposure to heme, and that artificial HS degradation by exposure to heparinase was associated with local complement activation. Further, prolonged exposure to heme modulated expression of several key genes of glycocalyx metabolism involved in coagulation regulation (C5-EPI, HS6ST1, HS3ST1). Thus, our study highlights the impact of hemolysis on the integrity of endothelial HS, both in patients and in endothelial cell models. Hence, acute alteration of HS may be a mechanism of heme-induced complement activation.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Nefropatias , Microangiopatias Trombóticas , Humanos , Glicocálix/metabolismo , Hemólise , Células Endoteliais/metabolismo , Estudos Retrospectivos , Ativação do Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Nefropatias/metabolismo , Heparitina Sulfato/metabolismo , Heme/metabolismo
4.
FEBS J ; 288(11): 3448-3464, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33314778

RESUMO

Heme's interaction with Toll-like receptor 4 (TLR4) does not fully explain the proinflammatory properties of this hemoglobin-derived molecule during intravascular hemolysis. The receptor for advanced glycation end products (RAGE) shares many features with TLR4 such as common ligands and proinflammatory, prothrombotic, and pro-oxidative signaling pathways, prompting us to study its involvement as a heme sensor. Stable RAGE-heme complexes with micromolar affinity were detected as heme-mediated RAGE oligomerization. The heme-binding site was located in the V domain of RAGE. This interaction was Fe3+ -dependent and competitive with carboxymethyllysine, another RAGE ligand. We confirmed a strong basal gene expression of RAGE in mouse lungs. After intraperitoneal heme injection, pulmonary TNF-α, IL1ß, and tissue factor gene expression levels increased in WT mice but were significantly lower in their RAGE-/- littermates. This may be related to the lower activation of ERK1/2 and Akt observed in the lungs of heme-treated, RAGE-/- mice. Overall, heme binds to RAGE with micromolar affinity and could promote proinflammatory and prothrombotic signaling in vivo, suggesting that this interaction could be implicated in heme-overload conditions.


Assuntos
Produtos Finais de Glicação Avançada/genética , Heme/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor 4 Toll-Like/genética , Animais , Sítios de Ligação/genética , Heme/metabolismo , Humanos , Interleucina-1beta/genética , Ligantes , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Necrose Tumoral alfa/genética
5.
J Biol Chem ; 295(50): 17310-17322, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33037071

RESUMO

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Obesidade/genética , Obesidade/metabolismo , Oxirredução , PPAR alfa/genética , Sirtuína 1/genética
6.
Acta Diabetol ; 57(7): 819-826, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32086613

RESUMO

AIMS: Not all people with obesity become glucose intolerant, suggesting differential activation of cellular pathways. The unfolded protein response (UPR) may contribute to the development of insulin resistance in several organs, but its role in skeletal muscle remains debated. Therefore, we explored the UPR activation in muscle from non-diabetic glucose tolerant or intolerant patients with obesity and the impact of bariatric procedures. METHODS: Muscle biopsies from 22 normoglycemic (NG, blood glucose measured 120 min after an oral glucose tolerance test, G120 < 7.8 mM) and 22 glucose intolerant (GI, G120 between 7.8 and 11.1 mM) patients with obesity were used to measure UPR activation by RTqPCR and western blot. Then, UPR was studied in biopsies from 7 NG and 7 GI patients before and 1 year after bariatric surgery. RESULTS: Binding immunoglobulin protein (BIP) protein was ~ 40% higher in the GI compared to NG subjects. Contrastingly, expression of the UPR-related genes BIP, activating transcription factor 6 (ATF6) and unspliced X-box binding protein 1 (XBP1u) were significantly lower and C/EBP homologous protein (CHOP) tended to decrease (p = 0.08) in GI individuals. While BIP protein positively correlated with fasting blood glucose (r = 0.38, p = 0.01), ATF6 and CHOP were associated with G120 (r = - 0.38 and r = - 0.41, p < 0.05) and the Matsuda index (r = 0.37 and r = 0.38, p < 0.05). Bariatric surgery improved metabolic parameters, associated with higher CHOP expression in GI patients, while ATF6 tended to increase (p = 0.08). CONCLUSIONS: CHOP and ATF6 expression decreased in non-diabetic GI patients with obesity and was modified by bariatric surgery. These genes may contribute to glucose homeostasis in human skeletal muscle.


Assuntos
Cirurgia Bariátrica , Intolerância à Glucose/cirurgia , Músculo Esquelético/metabolismo , Obesidade Mórbida/cirurgia , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Adulto , Biópsia , Glicemia/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Regulação da Expressão Gênica , Intolerância à Glucose/complicações , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Masculino , Músculo Esquelético/patologia , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
7.
Elife ; 92020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32091387

RESUMO

Control of cell death/survival balance is an important feature to maintain tissue homeostasis. Dependence receptors are able to induce either survival or cell death in presence or absence of their ligand, respectively. However, their precise mechanism of action and their physiological importance are still elusive for most of them including the MET receptor. We evidence that pro-apoptotic fragment generated by caspase cleavage of MET localizes to the mitochondria-associated membrane region. This fragment triggers a calcium transfer from endoplasmic reticulum to mitochondria, which is instrumental for the apoptotic action of the receptor. Knock-in mice bearing a mutation of MET caspase cleavage site highlighted that p40MET production is important for FAS-driven hepatocyte apoptosis, and demonstrate that MET acts as a dependence receptor in vivo. Our data shed light on new signaling mechanisms for dependence receptors' control of cell survival/death balance, which may offer new clues for the pathophysiology of epithelial structures.


Assuntos
Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Proteínas Proto-Oncogênicas c-met/fisiologia , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Transporte Proteico , Proteólise
8.
Sci Rep ; 10(1): 174, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932631

RESUMO

The gut microbiota participates in the control of energy homeostasis partly through fermentation of dietary fibers hence producing short-chain fatty acids (SCFAs), which in turn promote the secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) by binding to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells. We have previously shown that activation of the nuclear Farnesoid X Receptor (FXR) decreases the L-cell response to glucose. Here, we investigated whether FXR also regulates the SCFA-induced GLP-1 secretion. GLP-1 secretion in response to SCFAs was evaluated ex vivo in murine colonic biopsies and in colonoids of wild-type (WT) and FXR knock-out (KO) mice, in vitro in GLUTag and NCI-H716 L-cells activated with the synthetic FXR agonist GW4064 and in vivo in WT and FXR KO mice after prebiotic supplementation. SCFA-induced GLP-1 secretion was blunted in colonic biopsies from GW4064-treated mice and enhanced in FXR KO colonoids. In vitro FXR activation inhibited GLP-1 secretion in response to SCFAs and FFAR2 synthetic ligands, mainly by decreasing FFAR2 expression and downstream Gαq-signaling. FXR KO mice displayed elevated colonic FFAR2 mRNA levels and increased plasma GLP-1 levels upon local supply of SCFAs with prebiotic supplementation. Our results demonstrate that FXR activation decreases L-cell GLP-1 secretion in response to inulin-derived SCFA by reducing FFAR2 expression and signaling. Inactivation of intestinal FXR using bile acid sequestrants or synthetic antagonists in combination with prebiotic supplementation may be a promising therapeutic approach to boost the incretin axis in type 2 diabetes.


Assuntos
Colo/metabolismo , Ácidos Graxos Voláteis/farmacologia , Peptídeo 1 Semelhante ao Glucagon/antagonistas & inibidores , Microbiota , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Colo/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
9.
Cell Rep ; 29(6): 1410-1418.e6, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693883

RESUMO

Browning induction or transplantation of brown adipose tissue (BAT) or brown/beige adipocytes derived from progenitor or induced pluripotent stem cells (iPSCs) can represent a powerful strategy to treat metabolic diseases. However, our poor understanding of the mechanisms that govern the differentiation and activation of brown adipocytes limits the development of such therapy. Various genetic factors controlling the differentiation of brown adipocytes have been identified, although most studies have been performed using in vitro cultured pre-adipocytes. We investigate here the differentiation of brown adipocytes from adipose progenitors in the mouse embryo. We demonstrate that the formation of multiple lipid droplets (LDs) is initiated within clusters of glycogen, which is degraded through glycophagy to provide the metabolic substrates essential for de novo lipogenesis and LD formation. Therefore, this study uncovers the role of glycogen in the generation of LDs.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Embrião de Mamíferos/metabolismo , Glicogênio/metabolismo , Gotículas Lipídicas/metabolismo , Adipócitos Marrons/ultraestrutura , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/ultraestrutura , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Glicogênio/ultraestrutura , Humanos , Gotículas Lipídicas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , PPAR gama/genética , PPAR gama/metabolismo , RNA Interferente Pequeno , Transcriptoma
10.
J Hepatol ; 70(5): 963-973, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677458

RESUMO

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Assuntos
Adaptação Fisiológica , Fígado/metabolismo , PPAR alfa/fisiologia , Sepse/metabolismo , Animais , Infecções Bacterianas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL
11.
Antioxidants (Basel) ; 7(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042332

RESUMO

Wound healing is a well-tuned biological process, which is achieved via consecutive and overlapping phases including hemostasis, inflammatory-related events, cell proliferation and tissue remodeling. Several factors can impair wound healing such as oxygenation defects, aging, and stress as well as deleterious health conditions such as infection, diabetes, alcohol overuse, smoking and impaired nutritional status. Growing evidence suggests that reactive oxygen species (ROS) are crucial regulators of several phases of healing processes. ROS are centrally involved in all wound healing processes as low concentrations of ROS generation are required for the fight against invading microorganisms and cell survival signaling. Excessive production of ROS or impaired ROS detoxification causes oxidative damage, which is the main cause of non-healing chronic wounds. In this context, experimental and clinical studies have revealed that antioxidant and anti-inflammatory strategies have proven beneficial in the non-healing state. Among available antioxidant strategies, treatments using mitochondrial-targeted antioxidants are of particular interest. Specifically, mitochondrial-targeted peptides such as elamipretide have the potential to mitigate mitochondrial dysfunction and aberrant inflammatory response through activation of nucleotide-binding oligomerization domain (NOD)-like family receptors, such as the pyrin domain containing 3 (NLRP3) inflammasome, nuclear factor-kappa B (NF-κB) signaling pathway inhibition, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2).

12.
Gastroenterology ; 154(5): 1449-1464.e20, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29277561

RESUMO

BACKGROUND & AIMS: The innate immune system responds not only to bacterial signals, but also to non-infectious danger-associated molecular patterns that activate the NLRP3 inflammasome complex after tissue injury. Immune functions vary over the course of the day, but it is not clear whether these changes affect the activity of the NLRP3 inflammasome. We investigated whether the core clock component nuclear receptor subfamily 1 group D member 1 (NR1D1, also called Rev-erbα) regulates expression, activity of the NLRP3 inflammasome, and its signaling pathway. METHODS: We collected naïve peritoneal macrophages and plasma, at multiple times of day, from Nr1d1-/- mice and their Nr1d1+/+ littermates (controls) and analyzed expression NLRP3, interleukin 1ß (IL1B, in plasma), and IL18 (in plasma). We also collected bone marrow-derived primary macrophages from these mice. Levels of NR1D1 were knocked down with small hairpin RNAs in human primary macrophages. Bone marrow-derived primary macrophages from mice and human primary macrophages were incubated with lipopolysaccharide (LPS) to induce expression of NLRP3, IL1B, and IL18; cells were incubated with LPS and adenosine triphosphate to activate the NLRP3 complex. We analyzed caspase 1 activity and cytokine secretion. NR1D1 was activated in primary mouse and human macrophages by incubation with SR9009; some of the cells were also incubated with an NLRP3 inhibitor or inhibitors of caspase 1. Nr1d1-/- mice and control mice were given intraperitoneal injections of LPS to induce peritoneal inflammation; plasma samples were isolated and levels of cytokines were measured. Nr1d1-/- mice, control mice, and control mice given injections of SR9009 were given LPS and D-galactosamine to induce fulminant hepatitis and MCC950 to specifically inhibit NLRP3; plasma was collected to measure cytokines and a marker of liver failure (alanine aminotransferase); liver tissues were collected and analyzed by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. RESULTS: In peritoneal macrophages, expression of NLRP3 and activation of its complex varied with time of day (circadian rhythm)-this regulation required NR1D1. Primary macrophages from Nr1d1-/- mice and human macrophages with knockdown of NR1D1 had altered expression patterns of NLRP3, compared to macrophages that expressed NR1D1, and altered patterns of IL1B and 1L18 production. Mice with disruption of Nr1d1 developed more-severe acute peritoneal inflammation and fulminant hepatitis than control mice. Incubation of macrophage with the NR1D1 activator SR9009 reduced expression of NLRP3 and secretion of cytokines. Mice given SR9009 developed less-severe liver failure and had longer survival times than mice given saline (control). CONCLUSIONS: In studies of Nr1d1-/- mice and human macrophages with pharmacologic activation of NR1D1, we found NR1D1 to regulate the timing of NLRP3 expression and production of inflammatory cytokines by macrophages. Activation of NR1D1 reduced the severity of peritoneal inflammation and fulminant hepatitis in mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ritmo Circadiano , Inflamassomos/metabolismo , Falência Hepática Aguda/prevenção & controle , Fígado/metabolismo , Macrófagos Peritoneais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Caspase 1/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Galactosamina , Predisposição Genética para Doença , Inflamassomos/genética , Inflamassomos/imunologia , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Ativação de Macrófagos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/prevenção & controle , Fenótipo , Pirrolidinas/farmacologia , Interferência de RNA , Índice de Gravidade de Doença , Transdução de Sinais , Tiofenos/farmacologia , Fatores de Tempo , Transfecção
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 901-916, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28529179

RESUMO

Obesity and its associated metabolic disorders represent a major health burden, with economic and social consequences. Although adapted lifestyle and bariatric surgery are effective in reducing body weight, obesity prevalence is still rising. Obese individuals often become insulin-resistant. Obesity impacts on insulin responsive organs, such as the liver, adipose tissue and skeletal muscle, and increases the risk of cardiovascular diseases, type 2 diabetes and cancer. In this review, we discuss the effects of obesity and insulin resistance on skeletal muscle, an important organ for the control of postprandial glucose. The roles of mitochondria and the endoplasmic reticulum in insulin signaling are highlighted and potential innovative research and treatment perspectives are proposed.


Assuntos
Retículo Endoplasmático/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Animais , Glucose/metabolismo , Humanos
14.
Oncotarget ; 7(26): 39473-39485, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250023

RESUMO

Although MAPK pathway inhibitors are becoming a promising anticancer strategy, they are insufficient to fully eliminate cancer cells and their long-term efficacy is strikingly limited in patients with BRAF-mutant melanomas. It is well established that BRAF inhibitors (BRAFi) hamper glucose uptake before the apparition of cell death. Here, we show that BRAFi induce an extensive restructuring of mitochondria including an increase in mitochondrial activity and biogenesis associated with mitochondrial network remodeling. Furthermore, we report a close interaction between ER and mitochondria in melanoma exposed to BRAFi. This physical connection facilitates mitochondrial Ca2+ uptake after its release from the ER. Interestingly, Mfn2 silencing disrupts the ER-mitochondria interface, intensifies ER stress and exacerbates ER stress-induced apoptosis in cells exposed to BRAFi in vitro and in vivo. This mitochondrial control of ER stress-mediated cell death is similar in both BRAF- and NRAS-mutant melanoma cells exposed to MEK inhibitors. This evidence reinforces the relevance in combining MAPK pathway inhibitors with mitochondriotropic drugs to improve targeted therapies.


Assuntos
Neoplasias/enzimologia , Fosforilação Oxidativa , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azetidinas/farmacologia , Cálcio/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Inativação Gênica , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Camundongos SCID , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Interferência de RNA , Sulfonamidas/farmacologia , Resultado do Tratamento , Vemurafenib
15.
J Am Heart Assoc ; 2(4): e000184, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23963753

RESUMO

BACKGROUND: A hallmark of aging of the cardiac myocyte is impaired sarcoplasmic reticulum (SR) calcium uptake and relaxation due to decreased SR calcium ATPase (SERCA) activity. We tested the hypothesis that H2O2-mediated oxidation of SERCA contributes to impaired myocyte relaxation in aging. METHODS AND RESULTS: Young (5-month-old) and senescent (21-month-old) FVB wild-type (WT) or transgenic mice with myocyte-specific overexpression of catalase were studied. In senescent mice, myocyte-specific overexpression of catalase (1) prevented oxidative modification of SERCA as evidenced by sulfonation at Cys674, (2) preserved SERCA activity, (3) corrected impaired calcium handling and relaxation in isolated cardiac myocytes, and (4) prevented impaired left ventricular relaxation and diastolic dysfunction. Nitroxyl, which activates SERCA via S-glutathiolation at Cys674, failed to activate SERCA in freshly isolated ventricular myocytes from senescent mice. Finally, in adult rat ventricular myocytes in primary culture, adenoviral overexpression of SERCA in which Cys674 is mutated to serine partially preserved SERCA activity during exposure to H2O2. CONCLUSION: Oxidative modification of SERCA at Cys674 contributes to decreased SERCA activity and impaired myocyte relaxation in the senescent heart. Strategies to decrease oxidant levels and/or protect target proteins such as SERCA may be of value to preserve diastolic function in the aging heart.


Assuntos
Senescência Celular , Peróxido de Hidrogênio/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Disfunção Ventricular Esquerda/enzimologia , Fatores Etários , Animais , Sinalização do Cálcio/efeitos dos fármacos , Catalase/genética , Catalase/metabolismo , Células Cultivadas , Cisteína , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/enzimologia , Oxirredução , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transfecção , Regulação para Cima , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos
16.
Clin Sci (Lond) ; 121(9): 405-13, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21605084

RESUMO

We tested whether inhibition of mitochondrial membrane potential dissipation by CsA (ciclosporin A) would prevent doxorubicin-induced myocardial and mitochondrial dysfunction. Acute and subchronic models of doxorubicin exposition were performed in mice with either a single intraperitoneal bolus (10 mg/kg of body weight, intraperitoneal) or one injection of 4 mg·kg(-1) of body weight·week(-1) during 5 weeks. Follow-up was at 1.5 weeks and 16 weeks in acute and subchronic models respectively. Mice received either CsA (1 mg/kg of body weight, intraperitoneal on alternate days) or saline until follow-up. Heart function was evaluated by echocardiography. Mitochondrial measurements included oxygen consumption, membrane potential and externally added calcium-induced mitochondrial permeability transition. Mitochondrial mass was evaluated by transmission electronic microscopy and mtDNA (mitochondrial DNA) content. Mitochondrial dynamics were detected as the expression of GTPases involved in mitochondrial fusion and fission. In both the acute and chronic models, doxorubicin decreased left ventricular fractional shortening and survival. Heart function and survival were improved by CsA, but not by tacrolimus (FK506), a ciclosporin derivative with no inhibitory effect on the mitochondrial transition pore. In the acute model, doxorubicin exposure was associated with increased mtDNA content, mitochondrial fragmentation and changes in mitochondrial fusion- and fission-related transcripts [increases in Mfn2 (mitofusin 2), Opa1 (optic atrophy 1 homologue) and Fis1 (fission 1 homologue), and no changes in Drp1 (dynamin 1-like)]. CsA did not alter mitochondrial biogenesis, but prevented mitochondrial fragmentation and partially restored the mitochondrial energy-producing capacity. These findings suggest that in vivo CsA treatment may limit MPTP (mitochondrial permeability transition pore) opening, mitochondrial potential loss and contractile depression in acute and chronic models of cardiac toxicity induced by doxorubicin.


Assuntos
Ciclosporina/farmacologia , Doxorrubicina/efeitos adversos , Cardiopatias/induzido quimicamente , Cardiopatias/patologia , Mitocôndrias Cardíacas/metabolismo , Miocárdio/patologia , Animais , Antibióticos Antineoplásicos/farmacologia , Primers do DNA/genética , DNA Mitocondrial/metabolismo , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Permeabilidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Respir Res ; 12: 64, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21595935

RESUMO

BACKGROUND: Acute ozone exposure causes lung oxidative stress and inflammation leading to lung injury. At least one mechanism underlying the lung toxicity of ozone involves excessive production of reactive oxygen and nitrogen intermediates such as peroxynitrite. In addition and beyond its major prooxidant properties, peroxynitrite may nitrate tyrosine residues altering phosphorylation of many protein kinases involved in cell signalling. It was recently proposed that peroxynitrite activates 5'-AMP-activated kinase (AMPK), which regulates metabolic pathways and the response to cell stress. AMPK activation as a consequence of ozone exposure has not been previously evaluated. First, we tested whether acute ozone exposure in mice would impair alveolar fluid clearance, increase lung tissue peroxynitrite production and activate AMPK. Second, we tested whether loss of AMP-activated protein kinase alpha1 subunit in mouse would prevent enhanced oxidative stress and lung injury induced by ozone exposure. METHODS: Control and AMPKα1 deficient mice were exposed to ozone at a concentration of 2.0 ppm for 3 h in glass cages. Evaluation was performed 24 h after ozone exposure. Alveolar fluid clearance (AFC) was evaluated using fluorescein isothiocyanate tagged albumin. Differential cell counts, total protein levels, cytokine concentrations, myeloperoxidase activity and markers of oxidative stress, i.e. malondialdehyde and peroxynitrite, were determined in bronchoalveolar lavage (BAL) and lung homogenates (LH). Levels of AMPK-Thr172 phosphorylation and basolateral membrane Na(+)-K(+)-ATPase abundance were determined by Western blot. RESULTS: In control mice, ozone exposure induced lung inflammation as evidence by increased leukocyte count, protein concentration in BAL and myeloperoxidase activity, pro-inflammatory cytokine levels in LH. Increases in peroxynitrite levels (3 vs 4.4 nM, p = 0.02) and malondialdehyde concentrations (110 vs 230 µmole/g wet tissue) were detected in LH obtained from ozone-exposed control mice. Ozone exposure consistently increased phosphorylated AMPK-Thr172 to total AMPK ratio by 80% in control mice. Ozone exposure causes increases in AFC and basolateral membrane Na(+)-K(+)-ATPase abundance in control mice which did not occur in AMPKα1 deficient mice. CONCLUSIONS: Our results collectively suggest that AMPK activation participates in ozone-induced increases in AFC, inflammation and oxidative stress. Further studies are needed to understand how the AMPK pathway may provide a novel approach for the prevention of ozone-induced lung injury.


Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Lesão Pulmonar/prevenção & controle , Pulmão/enzimologia , Estresse Oxidativo , Ozônio , Proteínas Quinases Ativadas por AMP/genética , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Água Extravascular Pulmonar/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/enzimologia , Lesão Pulmonar/genética , Lesão Pulmonar/imunologia , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/metabolismo , Ácido Peroxinitroso/metabolismo , Fosforilação , Pneumonia/enzimologia , Pneumonia/prevenção & controle , Alvéolos Pulmonares/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo
18.
Circ Res ; 107(2): 228-32, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20508180

RESUMO

BACKGROUND: Myocyte contractile dysfunction occurs in pathological remodeling in association with abnormalities in calcium regulation. Mice with cardiac myocyte-specific overexpression of Galphaq develop progressive left ventricular failure associated with myocyte contractile dysfunction and calcium dysregulation. OBJECTIVE: We tested the hypothesis that myocyte contractile dysfunction in the Galphaq mouse heart is mediated by reactive oxygen species, and in particular, oxidative posttranslational modifications, which impair the function of sarcoplasmic reticulum Ca2+-ATPase (SERCA). METHODS AND RESULTS: Freshly isolated ventricular myocytes from Galphaq mice had marked abnormalities of myocyte contractile function and calcium transients. In Galphaq myocardium, SERCA protein was not altered in quantity but displayed evidence of oxidative cysteine modifications reflected by decreased biotinylated iodoacetamide labeling and evidence of specific irreversible oxidative modifications consisting of sulfonylation at cysteine 674 and nitration at tyrosines 294/295. Maximal calcium-stimulated SERCA activity was decreased 47% in Galphaq myocardium. Cross-breeding Galphaq mice with transgenic mice that have cardiac myocyte-specific overexpression of catalase (a) decreased SERCA oxidative cysteine modifications, (b) decreased SERCA cysteine 674 sulfonylation and tyrosine 294/295 nitration, (c) restored SERCA activity, and (d) improved myocyte calcium transients and contractile function. CONCLUSIONS: In Galphaq-induced cardiomyopathy, myocyte contractile dysfunction is mediated, at least in part, by 1 or more oxidative posttranslational modifications of SERCA. Protein oxidative posttranslational modifications contribute to the pathophysiology of myocardial dysfunction and thus may provide a target for therapeutic intervention.


Assuntos
Sinalização do Cálcio , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Processamento de Proteína Pós-Traducional , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Disfunção Ventricular Esquerda/enzimologia , Animais , Catalase/metabolismo , Células Cultivadas , Cisteína/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Camundongos , Camundongos Transgênicos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulação para Cima , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle
19.
Apoptosis ; 15(7): 769-81, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20151196

RESUMO

Lamellarin D (Lam D), a marine alkaloid, exhibits a potent cytotoxicity against many different tumors. The pro-apoptotic function of Lam D has been attributed to its direct induction of mitochondrial permeability transition (MPT). This study was undertaken to explore the mechanisms through which Lam D promotes changes in mitochondrial function and as a result apoptosis. The use of eight Lam derivatives provides useful structure-apoptosis relationships. We demonstrate that Lam D and structural analogues induce apoptosis of cancer cells by acting directly on mitochondria inducing reduction of mitochondrial membrane potential, swelling and cytochrome c release. Cyclosporin A, a well-known inhibitor of MPT, completely prevents mitochondrial signs of apoptosis. The drug decreases calcium uptake by mitochondria but not by microsomes indicating that Lam D-dependent permeability is specific to mitochondrial membranes. In addition, upon Lam D exposure, a rapid decline of mitochondrial respiration and ATP synthesis occurs in isolated mitochondria as well as in intact cells. Evaluation of the site of action of Lam D on the electron-transport chain revealed that the activity of respiratory chain complex III is reduced by a half. To determine whether Lam D could induce MPT-dependent apoptosis by inhibiting mitochondrial respiration, we generated respiration-deficient cells (rho0) derived from human melanoma cells. In comparison to parental cells, rho0 cells are totally resistant to the induction of MPT-dependent apoptosis by Lam D. Our results indicate that functional mitochondria are required for Lam D-induced apoptosis. Inhibition of mitochondrial respiration is responsible for MPT-dependent apoptosis of cancer cells induced by Lam-D.


Assuntos
Antineoplásicos/toxicidade , Apoptose , Cumarínicos/toxicidade , Compostos Heterocíclicos de 4 ou mais Anéis/toxicidade , Isoquinolinas/toxicidade , Mitocôndrias/efeitos dos fármacos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Cumarínicos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Isoquinolinas/química , Células Jurkat , Camundongos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Consumo de Oxigênio/efeitos dos fármacos , Ratos
20.
Toxicol Appl Pharmacol ; 244(3): 300-7, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20096298

RESUMO

The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 microM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt(max) of 105+/-8 mN/s in control hearts vs. 49+/-7 mN/s in doxorubicin-treated hearts; p<0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0+/-0.2 in control hearts vs. 2.2+/-0.2 in doxorubicin-treated hearts; p<0.05) and cytochrome c oxidase kinetic activity (24+/-1 microM cytochrome c/min/mg in control hearts vs. 14+/-3 microM cytochrome c/min/mg in doxorubicin-treated hearts; p<0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiotoxinas/toxicidade , Doxorrubicina/toxicidade , Coração/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Disfunção Ventricular Esquerda/prevenção & controle , Animais , Antraciclinas/toxicidade , Ciclosporina/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fluorescência , Fluorometria , Técnicas In Vitro , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA