Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 10(1)2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755509

RESUMO

Secretion of interleukin-1ß (IL-1ß) represents a fundamental innate immune response to microbial infection that, at the molecular level, occurs following activation of proteolytic caspases that cleave the immature protein into a secretable form. Human cytomegalovirus (HCMV) is the archetypal betaherpesvirus that is invariably capable of lifelong infection through the activity of numerous virally encoded immune evasion phenotypes. Innate immune pathways responsive to cytoplasmic double-stranded DNA (dsDNA) are known to be activated in response to contact between HCMV and host cells. Here, we used clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing to demonstrate that the dsDNA receptor absent in melanoma 2 (AIM2) is required for secretion of IL-1ß following HCMV infection. Furthermore, dsDNA-responsive innate signaling induced by HCMV infection that leads to activation of the type I interferon response is also shown, unexpectedly, to play a contributory role in IL-1ß secretion. Importantly, we also show that rendering virus particles inactive by UV exposure leads to substantially increased IL-1ß processing and secretion and that live HCMV can inhibit this, suggesting the virus encodes factors that confer an inhibitory effect on this response. Further examination revealed that ectopic expression of the immediate early (IE) 86-kDa protein (IE86) is actually associated with a block in transcription of the pro-IL-1ß gene and, independently, diminishment of the immature protein. Overall, these results reveal two new and distinct phenotypes conferred by the HCMV IE86 protein, as well as an unusual circumstance in which a single herpesviral protein exhibits inhibitory effects on multiple molecular processes within the same innate immune response.IMPORTANCE Persistent infection with HCMV is associated with the operation of diverse evasion phenotypes directed at antiviral immunity. Obstruction of intrinsic and innate immune responses is typically conferred by viral proteins either associated with the viral particle or expressed immediately after entry. In line with this, numerous phenotypes are attributed to the HCMV IE86 protein that involve interference with innate immune processes via transcriptional and protein-directed mechanisms. We describe novel IE86-mediated phenotypes aimed at virus-induced secretion of IL-1ß. Intriguingly, while many viruses target the function of the molecular scaffold required for IL-1ß maturation to prevent this response, we find that HCMV and IE86 target the IL-1ß protein specifically. Moreover, we show that IE86 impairs both the synthesis of the IL-1ß transcript and the stability of the immature protein. This indicates an unusual phenomenon in which a single viral protein exhibits two molecularly separate evasion phenotypes directed at a single innate cytokine.


Assuntos
Citomegalovirus/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Evasão da Resposta Imune , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Humanos , Proteólise , Células THP-1
2.
mBio ; 9(2)2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691342

RESUMO

The ability of human cytomegalovirus (HCMV) to reactivate from latent infection of hematopoietic progenitor cells (HPCs) is intimately linked to cellular differentiation. HCMV encodes UL7 that our group has shown is secreted from infected cells and induces angiogenesis. In this study, we show that UL7 is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R), a well-known critical factor in HPC differentiation. We observed that UL7 directly binds Flt-3R and induces downstream signaling cascades, including phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways. Importantly, we show that UL7 protein induces differentiation of both CD34+ HPCs and CD14+ monocytes. Last, we show that an HCMV mutant lacking UL7 fails to reactivate in CD34+ HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.IMPORTANCE Human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant recipients. CD34+ hematopoietic progenitor cells (HPCs) represent a critical reservoir of latent HCMV in the transplant population, thereby providing a source of virus for dissemination to visceral organs. HCMV reactivation has been linked to HPC/myeloid cellular differentiation; however, the mechanisms involved in these events are poorly understood at the molecular level. In this study, we show that a viral protein is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R) and that the binding of HCMV UL7 to the Flt-3R triggers HPC and monocyte differentiation. Moreover, the loss of UL7 prevents viral reactivation in HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.


Assuntos
Diferenciação Celular , Citomegalovirus/fisiologia , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno , Proteínas do Envelope Viral/metabolismo , Ativação Viral , Tirosina Quinase 3 Semelhante a fms/metabolismo , Células Cultivadas , Humanos , Ligação Proteica , Transdução de Sinais
3.
J Biol Chem ; 284(38): 25560-8, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19633289

RESUMO

Genomic stability requires a functional Fanconi anemia (FA) pathway composed of an upstream "core complex" (FA proteins A/B/C/E/F/G/L/M) that mediates monoubiquitination of the downstream targets FANCD2 and FANCI. Unique among FA core complex members, FANCM has processing activities toward replication-associated DNA structures, suggesting a vital role for FANCM during replication. Using Xenopus egg extracts, we analyzed the functions of FANCM in replication and the DNA damage response. xFANCM binds chromatin in a replication-dependent manner and is phosphorylated in response to DNA damage structures. Chromatin binding and DNA damage-induced phosphorylation of xFANCM are mediated in part by the downstream FA pathway protein FANCD2. Moreover, phosphorylation and chromatin recruitment of FANCM is regulated by two mayor players in the DNA damage response: the cell cycle checkpoint kinases ATR and ATM. Our results indicate that functions of FANCM are controlled by FA- and non-FA pathways in the DNA damage response.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Cromatina , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Oócitos/citologia , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Xenopus/genética , Xenopus laevis
4.
Mol Cancer ; 8: 133, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20043851

RESUMO

BACKGROUND: The Fanconi anemia (FA) pathway is a multigene DNA damage response network implicated in the repair of DNA lesions that arise during replication or after exogenous DNA damage. The FA pathway displays synthetic lethal relationship with certain DNA repair genes such as ATM (Ataxia Telangectasia Mutated) that are frequently mutated in tumors. Thus, inhibition of FANCD2 monoubiquitylation (FANCD2-Ub), a key step in the FA pathway, might target tumor cells defective in ATM through synthetic lethal interaction. Curcumin was previously identified as a weak inhibitor of FANCD2-Ub. The aim of this study is to identify derivatives of curcumin with better activity and specificity. RESULTS: Using a replication-free assay in Xenopus extracts, we screened monoketone analogs of curcumin for inhibition of FANCD2-Ub and identified analog EF24 as a strong inhibitor. Mechanistic studies suggest that EF24 targets the FA pathway through inhibition of the NF-kB pathway kinase IKK. In HeLa cells, nanomolar concentrations of EF24 inhibited hydroxyurea (HU)-induced FANCD2-Ub and foci in a cell-cycle independent manner. Survival assays revealed that EF24 specifically sensitizes FA-competent cells to the DNA crosslinking agent mitomycin C (MMC). In addition, in contrast with curcumin, ATM-deficient cells are twofold more sensitive to EF24 than matched wild-type cells, consistent with a synthetic lethal effect between FA pathway inhibition and ATM deficiency. An independent screen identified 4H-TTD, a compound structurally related to EF24 that displays similar activity in egg extracts and in cells. CONCLUSIONS: These results suggest that monoketone analogs of curcumin are potent inhibitors of the FA pathway and constitute a promising new class of targeted anticancer compounds.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Curcumina/análogos & derivados , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/antagonistas & inibidores , Anemia de Fanconi/metabolismo , Cetonas/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Curcumina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Sinergismo Farmacológico , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Mitomicina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Xenopus
5.
Int J Cancer ; 124(4): 783-92, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19048618

RESUMO

The Fanconi Anemia (FA) DNA damage response pathway is involved in the processing of DNA interstrand crosslinks (ICLs). As such, inhibition of the FA pathway could chemosensitize FA-competent tumor cells to commonly used ICL agents like cisplatin. Moreover, suppression of the FA pathway is synthetic lethal with deficiencies in several other DNA repair pathways, suggesting that FA pathway inhibitors could be used in targeted therapies against specific tumors. To identify such inhibitors, we designed a novel in vitro screening assay utilizing Xenopus egg extracts. Using the DNA-stimulated monoubiquitylation of Xenopus FANCD2 (xFANCD2-L) as readout, a chemical library screen identified DDN (2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone) as a novel and potent FA pathway inhibitor. DDN inhibited xFANCD2-L formation in a dose-dependent manner in both extracts and human cells without disruption of the upstream FA core complex. DDN also inhibited the characteristic subnuclear FANCD2 foci formation following DNA damage. Moreover, DDN displayed a greater synergistic effect with cisplatin in a FA-proficient cancer cell line compared to its FA-deficient isogenic counterpart, suggesting that DDN might be a good lead candidate as cisplatin chemosensitizer in both FA-deficient and FA-competent tumors. This system constitutes the first cell-free screening assay for identifying compounds that inhibit the FA pathway and provides a new biochemical platform for mapping the functions of its various components with specific chemical inhibitors.


Assuntos
Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Animais , Sobrevivência Celular , Sistema Livre de Células , Cisplatino/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , Dano ao DNA , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Xenopus laevis
6.
J Biol Chem ; 282(10): 6936-45, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17209051

RESUMO

The facilitating chromatin transcription (FACT) complex, a heterodimer of SSRP1 and Spt16, has been shown to regulate transcription elongation through a chromatin template in vitro and on specific genes in cells. However, its global role in transcription regulation in human cells remains largely elusive. We conducted spotted microarray analyses using arrays harboring 8308 human genes to assess the gene expression profile after knocking down SSRP1 or Spt16 levels in human non-small cell lung carcinoma (H1299) cells. Although the changes of these transcripts were surprisingly subtle, there were approximately 170 genes whose transcript levels were either reduced or induced >1.5-fold. Approximately 106 genes with >1.2-fold change at the level of transcripts were the common targets of both SSRP1 and Spt16 ( approximately 1.3%). A subset of genes was regulated by SSRP1 independent of Spt16. Further analyses of some of these genes not only verified this observation but also identified the serum-responsive gene, egr1, as a novel target for both SSRP1 and Spt16. We further showed that SSRP1 and Spt16 are important for the progression of elongation RNA pol II on the egr1 gene. These results suggest that SSRP1 has Spt16-dependent and -independent roles in regulating gene transcription in human cells.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Fatores de Elongação da Transcrição/fisiologia , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica , Humanos , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Interferente Pequeno/farmacologia , Soro/fisiologia
7.
Gene ; 319: 43-53, 2003 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-14597170

RESUMO

The present work describes sequence and transcription of three Spodoptera frugiperda genes encoding 6-cysteine-rich peptides. Sequence alignments indicate that the predicted peptides belong to the insect defensin family, although phylogenetic analyses suggest they form a cluster distinct from that of other neopteran insect defensins. The three genes were identified in a non-immune-challenged Sf9 cells cDNA (DNA complementary to RNA) library (Landais et al., Bioinformatics, in press) and were named spodoptericin, Sf-gallerimycin and Sf-cobatoxin. Spodoptericin is a novel defensin-like gene that appears to be weakly up-regulated following injection of bacteria and fungi. Interestingly, no sequence motif clearly homologous to cis regulatory element involved in the regulation of antimicrobial genes was found. An homologue of the spodoptericin gene was identified in the SilkBase Bombyx mori cDNA library. Sf-gallerimycin is related to the Galleria mellonella gallerimycin gene and is induced after immune challenge by injection of bacteria in the larval fat body as well as in hemocytes. In silico analysis of the sequence upstream from the cDNA reveals the presence of at least one motif homologous to a nuclear factor kappaB (NF-kappaB) binding site. Finally, Sf-cobatoxin is related to the G. mellonella cobatoxin-like gene. Despite high levels of constitutive expression compared to the two previous genes, transcription of Sf-cobatoxin is increased after immune, in particular, bacterial challenge. We therefore confirm that these three genes encode potential candidate molecules involved in S. frugiperda innate humoral response.


Assuntos
Proteínas de Insetos/genética , Spodoptera/genética , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Sequência de Bases , Linhagem Celular , DNA/química , DNA/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Defensinas/genética , Corpo Adiposo/citologia , Corpo Adiposo/metabolismo , Dosagem de Genes , Regulação da Expressão Gênica , Genes de Insetos/genética , Hemócitos/metabolismo , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Spodoptera/citologia , Spodoptera/microbiologia , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA