Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39195771

RESUMO

Snake venoms are cocktails of biologically active molecules that have evolved to immobilize prey, but can also induce a severe pathology in humans that are bitten. While animal-derived polyclonal antivenoms are the primary treatment for snakebites, they often have limitations in efficacy and can cause severe adverse side effects. Building on recent efforts to develop improved antivenoms, notably through monoclonal antibodies, requires a comprehensive understanding of venom toxins. Among these toxins, snake venom metalloproteinases (SVMPs) play a pivotal role, particularly in viper envenomation, causing tissue damage, hemorrhage and coagulation disruption. One of the current challenges in the development of neutralizing monoclonal antibodies against SVMPs is the large size of the protein and the lack of existing knowledge of neutralizing epitopes. Here, we screened a synthetic human antibody library to isolate monoclonal antibodies against an SVMP from saw-scaled viper (genus Echis) venom. Upon characterization, several antibodies were identified that effectively blocked SVMP-mediated prothrombin activation. Cryo-electron microscopy revealed the structural basis of antibody-mediated neutralization, pinpointing the non-catalytic cysteine-rich domain of SVMPs as a crucial target. These findings emphasize the importance of understanding the molecular mechanisms of SVMPs to counter their toxic effects, thus advancing the development of more effective antivenoms.


Assuntos
Anticorpos Neutralizantes , Protrombina , Animais , Humanos , Anticorpos Neutralizantes/imunologia , Protrombina/imunologia , Protrombina/química , Antivenenos/farmacologia , Antivenenos/imunologia , Antivenenos/química , Venenos de Víboras/imunologia , Venenos de Víboras/química , Venenos de Víboras/toxicidade , Cisteína/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Metaloproteases/química , Metaloproteases/imunologia , Domínios Proteicos , Viperidae
2.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712090

RESUMO

DNA double-strand breaks occur in all human cells on a daily basis and must be repaired with high fidelity to minimize genomic instability1. Deficiencies in high-fidelity DNA repair by homologous recombination lead to dependence on DNA polymerase theta, which identifies DNA microhomologies in 3' single-stranded DNA overhangs and anneals them to initiate error-prone double-strand break repair. The resulting genomic instability is associated with numerous cancers, thereby making this polymerase an attractive therapeutic target2,3. However, despite the biomedical importance of polymerase theta, the molecular details of how it initiates DNA break repair remain unclear4,5. Here we present cryo-electron microscopy structures of the polymerase theta helicase domain bound to microhomology-containing DNA, revealing DNA-induced rearrangements of the helicase that enable DNA repair. Our structures show that DNA-bound helicase dimers facilitate a microhomology search that positions 3' single-stranded DNA ends in proximity to align complementary base pairs and anneal DNA microhomology. We define the molecular determinants that enable the polymerase theta helicase domain to identify and pair DNA microhomologies to initiate mutagenic DNA repair, providing mechanistic insights into therapeutic targeting of these interactions.

3.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328110

RESUMO

Transthyretin (TTR) is a natively tetrameric thyroxine transporter found in blood and cerebrospinal fluid whose misfolding and aggregation causes transthyretin amyloidosis. A rational drug design campaign identified the small molecule tafamidis (Vyndaqel/Vyndamax) as an effective stabilizer of the native TTR fold, and this aggregation inhibitor is regulatory agency-approved for the treatment of TTR amyloidosis. Despite 50 years of structural studies on TTR and this triumph of structure-based drug design, there remains a notable dearth of structural information available to understand ligand binding allostery and amyloidogenic TTR unfolding intermediates. We used single-particle cryo-electron microscopy (cryo-EM) to investigate the conformational landscape of this 55 kiloDalton tetramer in the absence and presence of one or two ligands, revealing inherent asymmetries in the tetrameric architecture and previously unobserved conformational states. These findings provide critical mechanistic insights into negatively cooperative ligand binding and the structural pathways responsible for TTR amyloidogenesis. This study underscores the capacity of cryo-EM to provide new insights into protein structures that have been historically considered too small to visualize and to identify pharmacological targets suppressed by the confines of the crystal lattice, opening uncharted territory in structure-based drug design.

4.
J Biol Chem ; 300(1): 105504, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036174

RESUMO

The heterohexameric ATPases associated with diverse cellular activities (AAA)-ATPase Pex1/Pex6 is essential for the formation and maintenance of peroxisomes. Pex1/Pex6, similar to other AAA-ATPases, uses the energy from ATP hydrolysis to mechanically thread substrate proteins through its central pore, thereby unfolding them. In related AAA-ATPase motors, substrates are recruited through binding to the motor's N-terminal domains or N terminally bound cofactors. Here, we use structural and biochemical techniques to characterize the function of the N1 domain in Pex6 from budding yeast, Saccharomyces cerevisiae. We found that although Pex1/ΔN1-Pex6 is an active ATPase in vitro, it does not support Pex1/Pex6 function at the peroxisome in vivo. An X-ray crystal structure of the isolated Pex6 N1 domain shows that the Pex6 N1 domain shares the same fold as the N-terminal domains of PEX1, CDC48, and NSF, despite poor sequence conservation. Integrating this structure with a cryo-EM reconstruction of Pex1/Pex6, AlphaFold2 predictions, and biochemical assays shows that Pex6 N1 mediates binding to both the peroxisomal membrane tether Pex15 and an extended loop from the D2 ATPase domain of Pex1 that influences Pex1/Pex6 heterohexamer stability. Given the direct interactions with both Pex15 and the D2 ATPase domains, the Pex6 N1 domain is poised to coordinate binding of cofactors and substrates with Pex1/Pex6 ATPase activity.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Membrana , Fosfoproteínas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfoproteínas/metabolismo
5.
Cell Chem Biol ; 30(10): 1295-1302.e4, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37619563

RESUMO

Cross talk between metabolism and stress-responsive signaling is essential for maintaining cellular homeostasis. This cross talk is often achieved through covalent modification of proteins by endogenous, reactive metabolites that regulate key stress-responsive transcription factors like NRF2. Metabolites including methylglyoxal, glyceraldehyde 3-phosphate, fumarate, and itaconate covalently modify sensor cysteines of the NRF2 repressor KEAP1, resulting in stabilization of NRF2 and activation of its cytoprotective transcriptional program. Here, we employed a shRNA-based screen targeting the enzymes of central carbon metabolism to identify additional regulatory nodes bridging metabolism to NRF2 activation. Succinic anhydride, increased by genetic depletion of the TCA cycle enzyme succinyl-CoA synthetase or by direct administration, results in N-succinylation of lysine 131 of KEAP1 to activate NRF2 signaling. This study identifies KEAP1 as capable of sensing reactive metabolites not only by several cysteine residues but also by a conserved lysine residue, indicating its potential to sense an expanded repertoire of reactive metabolic messengers.


Assuntos
Lisina , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lisina/metabolismo , Transdução de Sinais , Estresse Oxidativo
6.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215033

RESUMO

Crosstalk between metabolism and stress-responsive signaling is essential to maintaining cellular homeostasis. One way this crosstalk is achieved is through the covalent modification of proteins by endogenous, reactive metabolites that regulate the activity of key stress-responsive transcription factors such as NRF2. Several metabolites including methylglyoxal, glyceraldehyde 3-phosphate, fumarate, and itaconate covalently modify sensor cysteines of the NRF2 regulatory protein KEAP1, resulting in stabilization of NRF2 and activation of its cytoprotective transcriptional program. Here, we employed a shRNA-based screen targeting the enzymes of central carbon metabolism to identify additional regulatory nodes bridging metabolic pathways to NRF2 activation. We found that succinic anhydride, increased by genetic depletion of the TCA cycle enzyme succinyl-CoA synthetase or by direct administration, results in N-succinylation of lysine 131 of KEAP1 to activate NRF2 transcriptional signaling. This study identifies KEAP1 as capable of sensing reactive metabolites not only by several cysteine residues but also by a conserved lysine residue, indicating its potential to sense an expanded repertoire of reactive metabolic messengers.

7.
Science ; 378(6617): 263-269, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264808

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma in humans and afflicts more than 58 million people worldwide. The HCV envelope E1 and E2 glycoproteins are essential for viral entry and comprise the primary antigenic target for neutralizing antibody responses. The molecular mechanisms of E1E2 assembly, as well as how the E1E2 heterodimer binds broadly neutralizing antibodies, remain elusive. Here, we present the cryo-electron microscopy structure of the membrane-extracted full-length E1E2 heterodimer in complex with three broadly neutralizing antibodies-AR4A, AT1209, and IGH505-at ~3.5-angstrom resolution. We resolve the interface between the E1 and E2 ectodomains and deliver a blueprint for the rational design of vaccine immunogens and antiviral drugs.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Humanos , Antivirais/química , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Hepacivirus/química , Hepacivirus/imunologia , Hepatite C/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Multimerização Proteica , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
8.
Nat Struct Mol Biol ; 29(8): 759-766, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864165

RESUMO

The AAA+ family member KaiC is the central pacemaker for circadian rhythms in the cyanobacterium Synechococcus elongatus. Composed of two hexameric rings of adenosine triphosphatase (ATPase) domains with tightly coupled activities, KaiC undergoes a cycle of autophosphorylation and autodephosphorylation on its C-terminal (CII) domain that restricts binding of clock proteins on its N-terminal (CI) domain to the evening. Here, we use cryogenic-electron microscopy to investigate how daytime and nighttime states of CII regulate KaiB binding on CI. We find that the CII hexamer is destabilized during the day but takes on a rigidified C2-symmetric state at night, concomitant with ring-ring compression. Residues at the CI-CII interface are required for phospho-dependent KaiB association, coupling ATPase activity on CI to cooperative KaiB recruitment. Together, these studies clarify a key step in the regulation of cyanobacterial circadian rhythms by KaiC phosphorylation.


Assuntos
Relógios Circadianos , Synechococcus , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Fosforilação , Synechococcus/metabolismo
9.
FASEB J ; 36(3): e22198, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35199390

RESUMO

GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.


Assuntos
Sítio Alostérico , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
10.
J Biol Chem ; 298(3): 101694, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143841

RESUMO

Lon protease is a conserved ATP-dependent serine protease composed of an AAA+ domain that mechanically unfolds substrates and a serine protease domain that degrades these unfolded substrates. In yeast, dysregulation of Lon protease (PIM1) attenuates lifespan and leads to gross mitochondrial morphological perturbations. Although structures of the bacterial and human Lon protease reveal a hexameric assembly, yeast PIM1 was speculated to form a heptameric assembly and is uniquely characterized by a ∼50-residue insertion between the ATPase and protease domains. To further understand the yeast-specific properties of PIM1, we determined a high-resolution cryo-electron microscopy structure of PIM1 in a substrate-translocating state. Here, we reveal that PIM1 forms a hexamer, conserved with that of bacterial and human Lon proteases, wherein the ATPase domains form a canonical closed spiral that enables pore loop residues to translocate substrates to the protease chamber. In the substrate-translocating state, PIM1 protease domains form a planar protease chamber in an active conformation and are uniquely characterized by a ∼15-residue C-terminal extension. These additional C-terminal residues form an α-helix located along the base of the protease domain. Finally, we did not observe density for the yeast-specific insertion between the ATPase and protease domains, likely due to high conformational flexibility. Biochemical studies to investigate the insertion using constructs that truncated or replaced the insertion with a glycine-serine linker suggest that the yeast-specific insertion is dispensable for PIM1's enzymatic function. Altogether, our structural and biochemical studies highlight unique components of PIM1 machinery and demonstrate evolutionary conservation of Lon protease function.


Assuntos
Proteínas Mitocondriais , Protease La , Proteínas Proto-Oncogênicas c-pim-1 , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidases , Proteases Dependentes de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Microscopia Crioeletrônica , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Protease La/química , Protease La/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade
11.
Nat Commun ; 12(1): 3239, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050165

RESUMO

The human mitochondrial AAA+ protein LONP1 is a critical quality control protease involved in regulating diverse aspects of mitochondrial biology including proteostasis, electron transport chain activity, and mitochondrial transcription. As such, genetic or aging-associated imbalances in LONP1 activity are implicated in pathologic mitochondrial dysfunction associated with numerous human diseases. Despite this importance, the molecular basis for LONP1-dependent proteolytic activity remains poorly defined. Here, we solved cryo-electron microscopy structures of human LONP1 to reveal the underlying molecular mechanisms governing substrate proteolysis. We show that, like bacterial Lon, human LONP1 adopts both an open and closed spiral staircase orientation dictated by the presence of substrate and nucleotide. Unlike bacterial Lon, human LONP1 contains a second spiral staircase within its ATPase domain that engages substrate as it is translocated toward the proteolytic chamber. Intriguingly, and in contrast to its bacterial ortholog, substrate binding within the central ATPase channel of LONP1 alone is insufficient to induce the activated conformation of the protease domains. To successfully induce the active protease conformation in substrate-bound LONP1, substrate binding within the protease active site is necessary, which we demonstrate by adding bortezomib, a peptidomimetic active site inhibitor of LONP1. These results suggest LONP1 can decouple ATPase and protease activities depending on whether AAA+ or both AAA+ and protease domains bind substrate. Importantly, our structures provide a molecular framework to define the critical importance of LONP1 in regulating mitochondrial proteostasis in health and disease.


Assuntos
Proteases Dependentes de ATP/ultraestrutura , Proteínas Mitocondriais/ultraestrutura , Proteases Dependentes de ATP/antagonistas & inibidores , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Envelhecimento/metabolismo , Bortezomib/farmacologia , Domínio Catalítico/efeitos dos fármacos , Microscopia Crioeletrônica , Ensaios Enzimáticos , Humanos , Hidrólise , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/genética , Proteólise , Proteostase , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
12.
Sci Adv ; 6(21): eaba8404, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32490208

RESUMO

Substrate-bound structures of AAA+ protein translocases reveal a conserved asymmetric spiral staircase architecture wherein a sequential ATP hydrolysis cycle drives hand-over-hand substrate translocation. However, this configuration is unlikely to represent the full conformational landscape of these enzymes, as biochemical studies suggest distinct conformational states depending on the presence or absence of substrate. Here, we used cryo-electron microscopy to determine structures of the Yersinia pestis Lon AAA+ protease in the absence and presence of substrate, uncovering the mechanistic basis for two distinct operational modes. In the absence of substrate, Lon adopts a left-handed, "open" spiral organization with autoinhibited proteolytic active sites. Upon the addition of substrate, Lon undergoes a reorganization to assemble an enzymatically active, right-handed "closed" conformer with active protease sites. These findings define the mechanistic principles underlying the operational plasticity required for processing diverse protein substrates.


Assuntos
Endopeptidases , Peptídeo Hidrolases , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Peptídeo Hidrolases/metabolismo , Proteólise
13.
Nat Rev Mol Cell Biol ; 21(1): 43-58, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31754261

RESUMO

ATPases associated with diverse cellular activities (AAA+ proteins) are macromolecular machines that convert the chemical energy contained in ATP molecules into powerful mechanical forces to remodel a vast array of cellular substrates, including protein aggregates, macromolecular complexes and polymers. AAA+ proteins have key functionalities encompassing unfolding and disassembly of such substrates in different subcellular localizations and, hence, power a plethora of fundamental cellular processes, including protein quality control, cytoskeleton remodelling and membrane dynamics. Over the past 35 years, many of the key elements required for AAA+ activity have been identified through genetic, biochemical and structural analyses. However, how ATP powers substrate remodelling and whether a shared mechanism underlies the functional diversity of the AAA+ superfamily were uncertain. Advances in cryo-electron microscopy have enabled high-resolution structure determination of AAA+ proteins trapped in the act of processing substrates, revealing a conserved core mechanism of action. It has also become apparent that this common mechanistic principle is structurally adjusted to carry out a diverse array of biological functions. Here, we review how substrate-bound structures of AAA+ proteins have expanded our understanding of ATP-driven protein remodelling.


Assuntos
Proteínas AAA/química , Proteínas AAA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Humanos , Hidrólise , Modelos Moleculares , Conformação Proteica
14.
Elife ; 82019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31778111

RESUMO

The 26S proteasome is essential for proteostasis and the regulation of vital processes through ATP-dependent degradation of ubiquitinated substrates. To accomplish the multi-step degradation process, the proteasome's regulatory particle, consisting of lid and base subcomplexes, undergoes major conformational changes whose origin is unknown. Investigating the Saccharomyces cerevisiae proteasome, we found that peripheral interactions between the lid subunit Rpn5 and the base AAA+ ATPase ring are important for stabilizing the substrate-engagement-competent state and coordinating the conformational switch to processing states upon substrate engagement. Disrupting these interactions perturbs the conformational equilibrium and interferes with degradation initiation, while later processing steps remain unaffected. Similar defects in early degradation steps are observed when eliminating hydrolysis in the ATPase subunit Rpt6, whose nucleotide state seems to control proteasome conformational transitions. These results provide important insight into interaction networks that coordinate conformational changes with various stages of degradation, and how modulators of conformational equilibria may influence substrate turnover.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
15.
Nat Commun ; 10(1): 3740, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431622

RESUMO

The transient receptor potential melastatin 2 (TRPM2) channel plays a key role in redox sensation in many cell types. Channel activation requires binding of both ADP-ribose (ADPR) and Ca2+. The recently published TRPM2 structures from Danio rerio in the ligand-free and the ADPR/Ca2+-bound conditions represent the channel in closed and open states, which uncovered substantial tertiary and quaternary conformational rearrangements. However, it is unclear how these rearrangements are achieved within the tetrameric channel during channel gating. Here we report the cryo-electron microscopy structures of Danio rerio TRPM2 in the absence of ligands, in complex with Ca2+ alone, and with both ADPR and Ca2+, resolved to ~4.3 Å, ~3.8 Å, and ~4.2 Å, respectively. In contrast to the published results, our studies capture ligand-bound TRPM2 structures in two-fold symmetric intermediate states, offering a glimpse of the structural transitions that bridge the closed and open conformations.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Cálcio/metabolismo , Estrutura Quaternária de Proteína , Canais de Cátion TRPM/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica , Células HEK293 , Humanos , Ativação do Canal Iônico , Técnicas de Patch-Clamp , Células Sf9 , Spodoptera , Canais de Cátion TRPM/química , Peixe-Zebra , Proteínas de Peixe-Zebra/química
16.
J Biol Chem ; 294(36): 13202-13217, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31285262

RESUMO

Dyneins are ATP-fueled macromolecular machines that power all minus-end microtubule-based transport processes of molecular cargo within eukaryotic cells and play essential roles in a wide variety of cellular functions. These complex and fascinating motors have been the target of countless structural and biophysical studies. These investigations have elucidated the mechanism of ATP-driven force production and have helped unravel the conformational rearrangements associated with the dynein mechanochemical cycle. However, despite decades of research, it remains unknown how these molecular motions are harnessed to power massive cellular reorganization and what are the regulatory mechanisms that drive these processes. Recent advancements in electron tomography imaging have enabled researchers to visualize dynein motors in their transport environment with unprecedented detail and have led to exciting discoveries regarding dynein motor function and regulation. In this review, we will highlight how these recent structural studies have fundamentally propelled our understanding of the dynein motor and have revealed some unexpected, unifying mechanisms of regulation.


Assuntos
Dineínas/metabolismo , Tomografia com Microscopia Eletrônica , Transporte Biológico , Dineínas/química , Humanos
17.
Nat Struct Mol Biol ; 26(8): 671-678, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285604

RESUMO

The AAA+ ATPase spastin remodels microtubule arrays through severing and its mutation is the most common cause of hereditary spastic paraplegias (HSP). Polyglutamylation of the tubulin C-terminal tail recruits spastin to microtubules and modulates severing activity. Here, we present a ~3.2 Å resolution cryo-EM structure of the Drosophila melanogaster spastin hexamer with a polyglutamate peptide bound in its central pore. Two electropositive loops arranged in a double-helical staircase coordinate the substrate sidechains. The structure reveals how concurrent nucleotide and substrate binding organizes the conserved spastin pore loops into an ordered network that is allosterically coupled to oligomerization, and suggests how tubulin tail engagement activates spastin for microtubule disassembly. This allosteric coupling may apply generally in organizing AAA+ protein translocases into their active conformations. We show that this allosteric network is essential for severing and is a hotspot for HSP mutations.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Mutação , Ácido Poliglutâmico/metabolismo , Polimerização , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Especificidade por Substrato , Tubulina (Proteína)/metabolismo
18.
Mol Cell ; 75(5): 1073-1085.e6, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327635

RESUMO

Mitochondrial AAA+ quality-control proteases regulate diverse aspects of mitochondrial biology through specialized protein degradation, but the underlying mechanisms of these enzymes remain poorly defined. The mitochondrial AAA+ protease AFG3L2 is of particular interest, as genetic mutations localized throughout AFG3L2 are linked to diverse neurodegenerative disorders. However, a lack of structural data has limited our understanding of how mutations impact enzymatic function. Here, we used cryoelectron microscopy (cryo-EM) to determine a substrate-bound structure of the catalytic core of human AFG3L2. This structure identifies multiple specialized structural features that integrate with conserved motifs required for ATP-dependent translocation to unfold and degrade targeted proteins. Many disease-relevant mutations localize to these unique structural features of AFG3L2 and distinctly influence its activity and stability. Our results provide a molecular basis for neurological phenotypes associated with different AFG3L2 mutations and establish a structural framework to understand how different members of the AAA+ superfamily achieve specialized biological functions.


Assuntos
Proteases Dependentes de ATP/química , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas Mitocondriais/química , Mutação , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Domínios Proteicos
19.
Nat Commun ; 10(1): 1032, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833564

RESUMO

Determining high-resolution structures of biological macromolecules amassing less than 100 kilodaltons (kDa) has been a longstanding goal of the cryo-electron microscopy (cryo-EM) community. While the Volta phase plate has enabled visualization of specimens in this size range, this instrumentation is not yet fully automated and can present technical challenges. Here, we show that conventional defocus-based cryo-EM methodologies can be used to determine high-resolution structures of specimens amassing less than 100 kDa using a transmission electron microscope operating at 200 keV coupled with a direct electron detector. Our ~2.7 Å structure of alcohol dehydrogenase (82 kDa) proves that bound ligands can be resolved with high fidelity to enable investigation of drug-target interactions. Our ~2.8 Å and ~3.2 Å structures of methemoglobin demonstrate that distinct conformational states can be identified within a dataset for proteins as small as 64 kDa. Furthermore, we provide the sub-nanometer cryo-EM structure of a sub-50 kDa protein.


Assuntos
Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Molecular , Álcool Desidrogenase/química , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/química , Ligantes , Microscopia Eletrônica de Transmissão/métodos , Peso Molecular , Proteínas/química
20.
Science ; 362(6418)2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309908

RESUMO

The 26S proteasome is the primary eukaryotic degradation machine and thus is critically involved in numerous cellular processes. The heterohexameric adenosine triphosphatase (ATPase) motor of the proteasome unfolds and translocates targeted protein substrates into the open gate of a proteolytic core while a proteasomal deubiquitinase concomitantly removes substrate-attached ubiquitin chains. However, the mechanisms by which ATP hydrolysis drives the conformational changes responsible for these processes have remained elusive. Here we present the cryo-electron microscopy structures of four distinct conformational states of the actively ATP-hydrolyzing, substrate-engaged 26S proteasome. These structures reveal how mechanical substrate translocation accelerates deubiquitination and how ATP-binding, -hydrolysis, and phosphate-release events are coordinated within the AAA+ (ATPases associated with diverse cellular activities) motor to induce conformational changes and propel the substrate through the central pore.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Transporte Biológico , Microscopia Crioeletrônica , Hidrólise , Conformação Proteica , Proteólise , Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA