Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cancer ; 23(1): 105, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755661

RESUMO

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Proteína Companheira de mTOR Insensível à Rapamicina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Ensaios Antitumorais Modelo de Xenoenxerto , MAP Quinase Quinase Quinases/antagonistas & inibidores
2.
Sci Total Environ ; 891: 164651, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37277040

RESUMO

Today application of sewage sludge (SL) and hydrochar (HC) in agriculture is a common practice for soil conditioning and crop fertilization, however safety concerns for human and environmental health due to the presence of toxic compounds have recently been expressed. Our aim was to test the suitability of proteomics coupled with bioanalytical tools for unravelling mixture effects of these applications in human and environmental safety assessment. We conducted proteomic and bioinformatic analysis of cell cultures used in the DR-CALUX® bioassay to identify proteins differentially abundant after exposure to SL and the corresponding HC, rather than only using the Bioanalytical Toxicity Equivalents (BEQs) obtained by DR-CALUX®. DR-CALUX® cells exposed to SL or HC showed a differential pattern of protein abundance depending on the type of SL and HC extract. The modified proteins are involved in antioxidant pathways, unfolded protein response and DNA damage that have close correlations with the effects of dioxin on biological systems and with onset of cancer and neurological disorders. Other cell response evidence suggested enrichment of heavy metals in the extracts. The present combined approach represents an advance in the application of bioanalytical tools for safety assessment of complex mixtures such as SL and HC. It proved successful in screening proteins, the abundance of which is determined by SL and HC and by the biological activity of legacy toxic compounds, including organohalogens.


Assuntos
Dibenzodioxinas Policloradas , Esgotos , Humanos , Genes Reporter , Proteômica , Dibenzodioxinas Policloradas/toxicidade , Bioensaio
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674438

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a form of chronic and irreversible fibrosing interstitial pneumonia of unknown etiology. Although antifibrotic treatments have shown a reduction of lung function decline and a slow disease progression, IPF is characterize by a very high mortality. Emerging evidence suggests that IPF increases the risk of lung carcinogenesis. Both diseases show similarities in terms of risk factors, such as history of smoking, concomitant emphysema, and viral infections, besides sharing similar pathogenic pathways. Lung cancer (LC) diagnosis is often difficult in IPF patients because of the diffuse lung injuries and abnormalities due to the underlying fibrosis. This is reflected in the lack of optimal therapeutic strategies for patients with both diseases. For this purpose, we performed a proteomic study on bronchoalveolar lavage fluid (BALF) samples from IPF, LC associated with IPF (LC-IPF) patients, and healthy controls (CTRL). Molecular pathways involved in inflammation, immune response, lipid metabolism, and cell adhesion were found for the dysregulated proteins in LC-IPF, such as TTHY, APOA1, S10A9, RET4, GDIR1, and PROF1. The correlation test revealed a relationship between inflammation- and lipid metabolism-related proteins. PROF1 and S10A9, related to inflammation, were up-regulated in LC-IPF BAL and serum, while APOA1 and APOE linked to lipid metabolism, were highly abundant in IPF BAL and low abundant in IPF serum. Given the properties of cytokine/adipokine of the nicotinamide phosphoribosyltransferase, we also evaluated its serum abundance, highlighting its down-regulation in LC-IPF. Our retrospective analyses of BAL samples extrapolated some potential biomarkers of LC-IPF useful to improve the management of these contemporary pathologies. Their differential abundance in serum samples permits the measurement of these potential biomarkers with a less invasive procedure.


Assuntos
Adenocarcinoma de Pulmão , Fibrose Pulmonar Idiopática , Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Proteômica/métodos , Fibrose Pulmonar Idiopática/metabolismo , Líquido da Lavagem Broncoalveolar , Fibrose , Inflamação , Adenocarcinoma de Pulmão/diagnóstico , Neoplasias Pulmonares/diagnóstico , Biomarcadores
4.
Cells ; 11(9)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563747

RESUMO

BACKGROUND: The use of BAL to study ILDs has improved our understanding of IPF pathogenesis. BAL fluid is routinely collected and can be considered a clinical and research tool. The procedure is well tolerated and minimally invasive. No specific cell lines from BAL or immortalized cell lines from IPF patients are available commercially. A method to quickly isolate and characterize fibroblasts from BAL is an unmet research need. MATERIALS AND METHODS: Here we describe a new protocol by which we isolated a cell line from IPF. The cell line was expanded in vitro and characterized phenotypically, morphologically and functionally. RESULTS: This culture showed highly filamentous cells with an evident central nucleus. From the phenotypic point of view, this cell line displays fibroblast/myofibroblast-like features including expression of alpha-SMA, vimentin, collagen type-1 and fibronectin. The results showed high expression of ROS in these cells. Oxidative stress invariably promotes extracellular matrix expression in lung diseases directly or through over-production of pro-fibrotic growth factors. CONCLUSIONS: Our protocol makes it possible to obtain fibroblasts BAL that is a routine non-invasive method that offers the possibility of having a large sample of patients. Standardized culture methods are important for a reliable model for testing molecules and eventual novel development therapeutic targets.


Assuntos
Fibrose Pulmonar Idiopática , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Irrigação Terapêutica
5.
J Clin Med ; 11(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35330001

RESUMO

The monotherapy with levo-thyroxine (LT4) is the treatment of choice for patients with hypothyroidism after thyroidectomy. However, many athyreotic LT4-treated patients with thyroid hormones in the physiological range experience hypothyroid-like symptoms, showing post-operative, statistically significant lower FT3 levels with respect to that before total thyroidectomy. Since we hypothesized that the lower plasmatic FT3 levels observed in this subgroup could be associated with tissue hypothyroidism, here we compared, by a preliminary proteomic analysis, eight sera of patients with reduced post-surgical FT3 to eight sera from patients with FT3 levels similar to pre-surgery levels, and six healthy controls. Proteomic analysis highlights a different serum protein profile among the considered conditions. By enrichment analysis, differential proteins are involved in coagulation processes (PLMN-1.61, -1.98 in reduced vs. stable FT3, p < 0.02; A1AT fragmentation), complement system activation (CFAH + 1.83, CFAB + 1.5, C1Qb + 1.6, C1S + 7.79 in reduced vs. stable FT3, p < 0.01) and in lipoprotein particles remodeling (APOAI fragmentation; APOAIV + 2.13, p < 0.003), potentially leading to a pro-inflammatory response. This study suggests that LT4 replacement therapy might restore biochemical euthyroid conditions in thyroidectomized patients, but in some cases without re-establishing body tissue euthyroidism. Since our results, this condition is reflected by the serum protein profile.

6.
Panminerva Med ; 64(4): 548-554, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33274906

RESUMO

Fibrotic hypersensitivity pneumonitis (fHP) is a frequently misdiagnosed fibrosing interstitial pneumonia, which often remains undiagnosed due to the lack of uniformity of diagnostic criteria. Its features are similar to those of other ILDs, especially idiopathic pulmonary fibrosis (IPF), and biomarkers with potential clinical value have been proposed. We reviewed the recent literature on serum and BAL biomarkers, focusing on their clinical role in the diagnosis and management of fHP. We searched Medline/Pubmed results from 2005 until April 2020. The manuscripts of interest selected by our search were limited in number and proposed different clinical biomarkers in serum (IgG antibodies, macrophage inflammatory proteins-1, epithelial cell proteins) and BAL (lymphocytes, T-cell mediators). This is the first review to summarize all the serum and BAL biomarkers for fHP proposed in the literature. This review summarized the main biomarkers investigated in fibrotic hypersensitivity pneumonitis because an urgent aim of subsequent research will be to validate and standardize them for diagnostic purposes.


Assuntos
Alveolite Alérgica Extrínseca , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Doenças Pulmonares Intersticiais/diagnóstico , Biomarcadores , Fibrose , Alveolite Alérgica Extrínseca/diagnóstico
7.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071777

RESUMO

In the longtime challenge of identifying specific, easily detectable and reliable biomarkers of IPF, BALF proteomics is providing interesting new insights into its pathogenesis. To the best of our knowledge, the present study is the first shotgun proteomic investigation of EVs isolated from BALF of IPF patients. Our main aim was to characterize the proteome of the vesicular component of BALF and to explore its individual impact on the pathogenesis of IPF. To this purpose, ultracentrifugation was chosen as the EVs isolation technique, and their purification was assessed by TEM, 2DE and LC-MS/MS. Our 2DE data and scatter plots showed considerable differences between the proteome of EVs and that of whole BALF and of its fluid component. Analysis of protein content and protein functions evidenced that EV proteins are predominantly involved in cytoskeleton remodeling, adenosine signaling, adrenergic signaling, C-peptide signaling and lipid metabolism. Our findings may suggest a wider system involvement in the disease pathogenesis and support the importance of pre-fractioning of complex samples, such as BALF, in order to let low-abundant proteins-mediated pathways emerge.


Assuntos
Biomarcadores , Líquido da Lavagem Broncoalveolar , Vesículas Extracelulares/metabolismo , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/metabolismo , Proteoma , Proteômica , Idoso , Cromatografia Líquida , Suscetibilidade a Doenças , Eletroforese em Gel Bidimensional , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Transdução de Sinais , Espectrometria de Massas em Tandem
8.
Fertil Steril ; 115(4): 1054-1062, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33500140

RESUMO

OBJECTIVE: To assess the role of embryo secretome in modifying the molecular profile of glycodelin A (GdA) in endometrial organoids (ORG) mimicking the implantation window. To verify whether the use of embryo-conditioned culture medium at the time of the embryo transfer may increase in vitro fertilization outcome. DESIGN: Molecular study with human endometrial ORG and embryo-conditioned culture medium. Retrospective study using prospectively recorded data. SETTING: University hospital. PATIENT(S): For isolation and culture of endometrial glandular ORG, endometrial biopsy specimens from five white women of proven fertility undergoing laparoscopy for tubal sterilization. A total of 75 women undergoing intracytoplasmic sperm injection for tubal and/or male infertility factor. INTERVENTIONS(S): In vitro fertilization. MAIN OUTCOME MEASURE(S): Pinopodes presence in human endometrial ORG. Glycodelin A expression profile by means of two-dimensional electrophoresis. In vitro fertilization outcome. RESULT(S): This in vitro study demonstrated that the treatment of endometrial ORG with the secretome of medium conditioned by the growing embryo increased the GdA relative abundance and induced a different glycoform pattern. Biochemical and clinical pregnancy rate significantly increased when the spent medium was loaded during the transfer (17.5% vs. 36.6% and 16.5% vs. 35.1%, respectively). CONCLUSION(S): This study demonstrated that the secretome of implanting embryos is able to induce the expression as well as to determine the relative abundance and the glycosilation profile of endometrial GdA, a protein having a key role in the embryo-endometrial cross talk. Moreover, a significant increase in pregnancy rate was observed when the embryo transfer was performed by using the culture medium conditioned by the growing embryo.


Assuntos
Técnicas de Cultura Embrionária/métodos , Implantação do Embrião/fisiologia , Transferência Embrionária/métodos , Endométrio/metabolismo , Comunicação Parácrina/fisiologia , Estudo de Prova de Conceito , Adulto , Endométrio/citologia , Feminino , Humanos , Infertilidade/diagnóstico , Infertilidade/metabolismo , Infertilidade/terapia , Masculino , Estudos Prospectivos , Estudos Retrospectivos , Injeções de Esperma Intracitoplásmicas/métodos
9.
Intern Med J ; 51(5): 705-711, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32040256

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease often managed with nintedanib, a tyrosine kinase inhibitor targeting several profibrotic pathways. Although clotting processes are involved in wound healing and repair in the lung, there are no data on the role of antithrombin III (ATIII) in IPF patients treated with nintedanib. A previous proteomic analysis of serum of IPF patients before and after 1 year of nintedanib treatment showed differential protein expression of ATIII. AIMS: Here we used quantitative methods to evaluate differential ATIII concentrations in IPF patients before and after 1 year of nintedanib treatment and to assess the potential of ATIII as a prognostic biomarker in IPF patients. METHODS: Serum levels of ATIII were measured by enzyme-linked immunosorbent assay in 14 IPF patients before and after 1 year of nintedanib treatment. RESULTS: A statistically significant inverse correlation was found between serum ATIII concentrations and pulmonary function test parameters in all patients at baseline and follow up. Baseline serum ATIII and bronchoalveolar lavage (BAL) neutrophils proved to be reliable predictors of poor prognosis. A baseline ATIII threshold of 126.5 µg/mL discriminated survivors from non-survivors. CONCLUSIONS: After 12 months of antifibrotic treatment, IPF patients with high serum ATIII concentrations and high BAL neutrophil percentages had a poor prognosis and increased survival risk. The results of this preliminary study suggest that ATIII has potential as a biomarker of IPF severity and in predicting response to nintedanib therapy. As a marker, ATIII showed several advantages over BAL neutrophil percentage.


Assuntos
Antitrombina III , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/uso terapêutico , Proteômica
10.
Immunobiology ; 225(5): 151997, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32962817

RESUMO

Adipokines (APN) are mainly secreted by adipocytes, macrophages and various other cells, along with their role in the regulation and mediation of inflammatory responses. APN is almost exclusively synthesized by adipocytes and regulated by peroxisome proliferator-activated receptor γ (PPARγ) that is involved in the epithelial-mesenchymal transition, linked lung fibrosis. Leptin is involved in acute lung injury with a role in lung fibrogenesis. Little is known about the relationship between APN/leptin and idiopathic pulmonary fibrosis (IPF) and the few studies available in the literature used ELISA to detect these lipid mediators. Our study is also the first to measure adipokines by the new multiplex assay and for the first time were performed in bronchoalveolar lavage (BAL) from IPF patients. This preliminary study suggests that APN levels in serum could be useful for predicting the prognosis of IPF, as they are inversely correlated with DLco percentages and BMI. Moreover, this first analysis of APN in BAL from IPF patients by a new method demonstrated an inverse correlation between these levels and BMI values and a direct correlation with eosinophil percentages, both of which are negative prognostic factors of IPF.


Assuntos
Adiponectina/sangue , Líquido da Lavagem Broncoalveolar/química , Fibrose Pulmonar Idiopática/sangue , Leptina/sangue , Adiponectina/imunologia , Idoso , Bioensaio , Índice de Massa Corporal , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Humanos , Fibrose Pulmonar Idiopática/imunologia , Leptina/imunologia , Masculino , Pessoa de Meia-Idade
11.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784632

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative disorder limited to the lung. New findings, starting from our proteomics studies on IPF, suggest that systemic involvement with altered molecular mechanisms and metabolic disorder is an underlying cause of fibrosis. The role of metabolic dysregulation in the pathogenesis of IPF has not been extensively studied, despite a recent surge of interest. In particular, our studies on bronchoalveolar lavage fluid have shown that the renin-angiotensin-aldosterone system (RAAS), the hypoxia/oxidative stress response, and changes in iron and lipid metabolism are involved in onset of IPF. These processes appear to interact in an intricate manner and to be related to different fibrosing pathologies not directly linked to the lung environment. The disordered metabolism of carbohydrates, lipids, proteins and hormones has been documented in lung, liver, and kidney fibrosis. Correcting these metabolic alterations may offer a new strategy for treating fibrosis. This paper focuses on the role of metabolic dysregulation in the pathogenesis of IPF and is a continuation of our previous studies, investigating metabolic dysregulation as a new target for fibrosis therapy.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Animais , Humanos , Fibrose Pulmonar Idiopática/patologia , Ferro/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/patologia , Estresse Oxidativo , Proteômica
12.
Sci Rep ; 10(1): 9378, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523095

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal progressive disease with a median survival of 2-5 years. Nintedanib is a small tyrosine kinase inhibitor that reduces IPF progression, significantly slowing the annual decline in Forced Vital Capacity (FVC). Very little data is available on the molecular mechanisms of this treatment in IPF, despite a growing interest in the definition of IPF pathogenesis and target therapy. A functional proteomic approach was applied to the analysis of serum samples from IPF patients in order to highlight differential proteins potentially indicative of drug-induced molecular pathways modifications and response to therapy. Twelve serum samples were collected from six IPF patients in care at Siena Regional Referral Center for Interstitial Lung Diseases (ILDs) and treated with nintedanib for one year. Serum samples were analyzed at baseline (T0 before starting therapy) and after one year of treatment (T1) and underwent differential proteomic and bioinformatic analysis. Proteomic analysis revealed 13 protein species that were significantly increased after one year of treatment. When the targets of nintedanib (VEGFR, FGFR and PDGFR) were added, enrichment analysis extracted molecular pathways and process networks involved in cell differentiation (haptoglobin and albumin), coagulation (antithrombin III), epithelial mesenchymal transition, cell proliferation and transmigration. PI3K and MAPK induced up-regulation of apolipoprotein C3. Proteomic study found 13 protein species up-regulated in IPF patients after one year of nintedanib treatment. Haptoglobin, a central hub of our analysis was validated by 2D-WB and ELISA as theranostic marker in a more numerous populations of patients.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Albuminas/metabolismo , Antitrombina III/metabolismo , Coagulação Sanguínea , Diferenciação Celular , Movimento Celular , Proliferação de Células , Biologia Computacional , Estudos Controlados Antes e Depois , Transição Epitelial-Mesenquimal , Feminino , Haptoglobinas/metabolismo , Humanos , Masculino , Proteômica , Capacidade Vital/efeitos dos fármacos
13.
Monaldi Arch Chest Dis ; 90(2)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32362107

RESUMO

Acute exacerbations (AEs) are among the main causes of death in idiopathic pulmonary fibrosis (IPF) patients. In this study proteomic comparative analysis of bronchoalveolar lavage (BAL) fluid samples was performed in stable IPF patients versus AEs IPF group to identify AE pathogenetic mechanisms and novel potential predictive biomarkers. A functional proteomic analysis of BAL fluid samples from stable and AE-IPF patients was conducted in a population of 27 IPF patients. Fifty-one differentially abundant spots were observed and identified by mass spectrometry. Enrichment analysis found proteins of interest involved in the regulation of macrophages and lipid metabolism receptors. In acute exacerbation IPF group, differentially abundant proteins were involved in propagation of the ß-catenin WNT transduction signal, and proteins up-regulated in lung carcinogenesis (IGKC, S100A9, PEDF, IGHG1, ALDOA, A1AT, HPT, CO3 and PIGR) and acute phase proteins involved in protease-antiprotease imbalance (such as A1AT fragments). Dot-blot analysis of A1AT C-36 peptide allowed validating our findings, confirming up-regulation in AE IPF patients and suggesting its potential pathogenetic role. A crucial role of protease/antiprotease imbalance, clathrin-mediated endocytosis signalling and carcinogenesis emerged in IPF patients developing acute exacerbations.


Assuntos
Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Fibrose Pulmonar Idiopática/metabolismo , Proteômica/métodos , Idoso , Idoso de 80 Anos ou mais , Carcinogênese/metabolismo , Progressão da Doença , Endocitose/fisiologia , Feminino , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Transdução de Sinais/genética , Regulação para Cima , beta Catenina/metabolismo
14.
Inflammation ; 43(1): 1-7, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31297749

RESUMO

Idiopathic pulmonary fibrosis is characterised by abnormal reepithelialisation and remodelling consequent to persistent stimuli or injury. The involvement of oxidative stress in alveolar injury, inflammation and fibrosis development has been suggested. Increased concentrations of lipid peroxidation products, oxidised proteins and an altered antioxidant enzyme status with the depletion of glutathione, the most abundant low-molecular-weight antioxidant, have often been reported in epithelial lining fluid of IPF patients. This review describes the sources of free radical generation, ROS-induced signalling pathways and mechanisms of oxidative stress damages in the pathogenesis of idiopathic pulmonary fibrosis.


Assuntos
Antioxidantes/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Glutationa/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Peroxidação de Lipídeos , Pulmão/patologia , Carbonilação Proteica , Transdução de Sinais
15.
Panminerva Med ; 62(2): 109-115, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31577091

RESUMO

The proteomic approach applied to the analysis of BAL gives a panorama of the complex network of proteins of different origin and function and their modifications at alveolar level. Cigarette smoking may influence BAL protein composition and it represents the most relevant risk factor for several lung diseases. This review, for the first time, discusses the available literature regarding the effects of cigarette smoking on BAL protein composition of healthy subjects and patients affected by interstitial lung diseases (ILD). The comparison of BAL protein profiles of smokers and non-smoker healthy controls revealed alterations of proteins related to oxidative stress and protease/antiprotease imbalance (such as alpha 1 antitrypsin, alpha-1-antichymotrypsin, apolipoprotein A1, peroxiredoxin 1 and glutathione S transferase P). Smoking exposure leads to a significant dysregulation of a large number of molecular pathways involved in interstitial lung diseases and the proteomic studies applied to the study of BAL of idiopathic pulmonary fibrosis, sarcoidosis and other ILD contributed to clarify the underlying pathogenetic mechanisms facilitating ILD development and biomarker discovery.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Fumar Cigarros/efeitos adversos , Doenças Pulmonares Intersticiais/metabolismo , Proteínas/metabolismo , Biomarcadores/metabolismo , Humanos , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , não Fumantes , Proteômica , Fatores de Risco , Fumantes
16.
Respir Physiol Neurobiol ; 273: 103323, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678459

RESUMO

RATIONALE: Galectin-1 is a carbohydrate-binding protein involved in apoptosis, cell-proliferation and differentiation, implicated in T-cell homeostasis and survival. The aim of the present study was to determine concentrations of galectin-1 in BAL fluid from patients with IPF and other interstitial lung diseases in order to validate proteomic previous findings. METHODS: 36 IPF patients (16 females, mean age of 64.8 ± 8.9 years), 24 sarcoidosis patients (15 females, mean age of 56.3 ± 13.4), 7 interstitial lung diseases associated to systemic sclerosis (ILD-SSc) patients (5 females, mean age of 55.5 ± 16.4) and six healthy controls (4 females, mean age 47.8 ± 15.2) were included. Galectin-1 concentrations were determined in BAL samples by an ELISA assay. RESULTS: Galectin-1 concentrations were significantly higher in BAL of IPF patients than in sarcoidosis and ILD-SSc patients and healthy controls. In IPF patients, galectin-1 levels showed significant inverse correlations with DLCO%, KCO% and BAL lymphocyte percentages and a positive correlation with BAL macrophage percentages. Former IPF smokers had higher concentrations of this protein compared with non-smoker IPF patients. CONCLUSION: Galectin-1 was confirmed a protein of interest in idiopathic pulmonary fibrosis. Its BAL concentrations were higher in IPF patients than in controls and correlated with disease severity. Galectin-1 was suggested to have a role in the pathogenesis of IPF, principally through the ERK/MAPK pathway and the inhibition of galectin-1 is a potential therapeutic target worthy of research.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Galectina 1/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Fumar/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Doenças Pulmonares Intersticiais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Sarcoidose Pulmonar/metabolismo , Sarcoidose Pulmonar/fisiopatologia , Índice de Gravidade de Doença , Fumar/fisiopatologia
17.
Nucleic Acids Res ; 47(8): 4068-4085, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799487

RESUMO

DNA double strand break (DSB) repair through homologous recombination (HR) is crucial to maintain genome stability. DSB resection generates a single strand DNA intermediate, which is crucial for the HR process. We used a synthetic DNA structure, mimicking a resection intermediate, as a bait to identify proteins involved in this process. Among these, LC/MS analysis identified the RNA binding protein, HNRNPD. We found that HNRNPD binds chromatin, although this binding occurred independently of DNA damage. However, upon damage, HNRNPD re-localized to γH2Ax foci and its silencing impaired CHK1 S345 phosphorylation and the DNA end resection process. Indeed, HNRNPD silencing reduced: the ssDNA fraction upon camptothecin treatment; AsiSI-induced DSB resection; and RPA32 S4/8 phosphorylation. CRISPR/Cas9-mediated HNRNPD knockout impaired in vitro DNA resection and sensitized cells to camptothecin and olaparib treatment. We found that HNRNPD interacts with the heterogeneous nuclear ribonucleoprotein SAF-A previously associated with DNA damage repair. HNRNPD depletion resulted in an increased amount of RNA:DNA hybrids upon DNA damage. Both the expression of RNase H1 and RNA pol II inhibition recovered the ability to phosphorylate RPA32 S4/8 in HNRNPD knockout cells upon DNA damage, suggesting that RNA:DNA hybrid resolution likely rescues the defective DNA damage response of HNRNPD-depleted cells.


Assuntos
Cromatina/metabolismo , Genoma Humano , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Reparo de DNA por Recombinação , Proteína de Replicação A/genética , Antineoplásicos/farmacologia , Camptotecina/farmacologia , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Cromatina/efeitos dos fármacos , Cromatina/ultraestrutura , DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Instabilidade Genômica , Células HeLa , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ftalazinas/farmacologia , Piperazinas/farmacologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Reparo de DNA por Recombinação/efeitos dos fármacos , Proteína de Replicação A/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo
19.
J Proteomics ; 170: 28-42, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28970102

RESUMO

Cystic Fibrosis (CF) is a recessively inherited disease caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CFTR has a pivotal role in the onset of CF, and several proteins are involved in its homeostasis. To study CFTR interactors at protein species level, we used a functional proteomics approach combining 2D-DIGE, mass spectrometry and enrichment analysis. A human bronchial epithelial cell line with cystic fibrosis (CFBE41o-) and the control (16HBE14o-) were used for the comparison. 73 differentially abundant spots were identified and some validated by western-blot. Enrichment analysis highlighted molecular pathways in which ezrin, HSP70, endoplasmin and lamin A/C, in addition to CFTR, were considered central hubs in CFTR homeostasis. These proteins acquire different functions through post-translational modifications, emphasizing the importance of studying the CF proteome at protein species level. Moreover, serpin H1, prelamin A/C, protein-SET and cystatin-B were associated to CF, demonstrating the importance of heat shock response, cross-talk between the cytoskeleton and signal transduction, chronic inflammation and alteration of CFTR gating in the pathophysiology of the disease. These results open new perspectives for the understanding of the proteostasis network, characteristic of CF pathology, and could provide a springboard for new therapeutic strategies. BIOLOGICAL SIGNIFICANCE: Homeostasis of CFTR is a dynamic process managed by multiple proteostatic pathways. The used gel-based proteomic approach and enrichment analysis pointed out protein species variations among Human Bronchial (16HBE14o-) and Cystic Fibrosis Bronchial Epithelial cell lines (CFBE41o-) and specific molecular mechanisms involved in CF. In particular, we have highlighted HSP70 (HSP7C), HSP90 (endoplasmin), ERM proteins (ezrin), and lamin-A/C as central hubs of the functional analysis. Moreover, for the first time we consider serpin H1, lamin A/C, protein-SET and cystatin-B important player in CF, affecting acute exacerbation, cytoskeleton reorganization, CFTR gating and chronic inflammation in CF. Due to the presence of different spots corresponding to the same protein, we focalize our attention on the idea that a "protein species discourse" is mandatory to well-define functional roles of proteins. Our approach has permitted to pay attention to the molecular mechanisms which regulate pathways directly or indirectly involved with CFTR defects: heat shock response, cross-talk between cytoskeleton and signal transduction, chronic inflammation and alteration of CFTR gating. Our data could open new perspectives into the understanding of CF, identifying potential targets for drug treatments in order to alleviate Δ508CFTR membrane instability and consequently increase life expectancy for CF patients.


Assuntos
Fibrose Cística/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Linhagem Celular Transformada , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Proteoma/genética
20.
Front Plant Sci ; 7: 656, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242857

RESUMO

Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA